
Supporting Information on Demand with the
DisServicePro Proactive Peer-to-peer Information

Dissemination System
Silvia Rota, Giacomo Benincasa, Matteo Interlandi,
Niranjan Suri, Brian Bonnlander, Jeffrey Bradshaw

Florida Institute for Human & Machine Cognition
Pensacola, FL USA

{srota, gbenincasa, minterlandi, nsuri, bbonnlander,
jbradshaw}@ihmc.us

Mauro Tortonesi
University of Ferrara

Ferrara, Italy
mtortonesi@unife.it

Scott Watson, Kevin Boner
Space and Naval Warfare Systems Command

San Diego, CA USA{scott.c.watson,
kevin.boner}@navy.mil

Abstract— Tactical networks are highly dynamic environments
characterized by constrained resources, limited bandwidth, and
intermittent connectivity. The limits on communication cause
significant delays in the delivery of information to edge users.
This paper focuses on an approach to improve the timeliness of
access to information via prediction and pre-staging. The
approach also incorporates a learning mechanism to dynamically
adapt the information prediction algorithm. This capability has
been integrated into the DisService peer-to-peer information
dissemination system, which opportunistically exploits any
available connectivity to address the challenging environment.
The extended system, called DisServicePro (for Proactive)
predicts the information needs of edge users using their mission
description, including the routes that users may take as part of
the mission.

DisServicePro extends the capabilities of DisService by efficiently
and proactively disseminating information to the edge nodes by
means of replication and forwarding policies. The
proactive behavior is the result of the integration of policies and
a distributed learning algorithm that takes into account the
history of previously requested information, along with the
characteristics of the target nodes and the mission. As new
information becomes available, DisServicePro matches it against
the mission profile and pushes relevant information to the edge
nodes. Information that is selected to be pushed is sorted based
on the predicted time to use as well as the confidence value of the
prediction.

Keywords: tactical networks, peer-to-peer, proactive information
dissemination, decision trees, dynamic information prioritization,
pre-staging, information on-demand.

I. INTRODUCTION
Tactical military environments are characterized by

dynamic topologies populated with highly mobile wireless
devices that are operated with limited range, processing power,
memory, and storage. This results in intermittent connectivity
and frequent changes in bandwidth and latency. In spite of
these challenges, users require robust, reliable and timely
information dissemination on-demand. In these environments it

is critical to fully exploit sporadic temporary connections when
they are available. In this paper we present DisServicePro, a
proactive information dissemination service for tactical
networks. In previous work [1], we described DisService, a
peer-to-peer information dissemination system that
opportunistically discovers and exploits available connections
and uses a Pub/Sub approach to disseminate information
through broadcast and multicast. DisServicePro extends
DisService capabilities by implementing a proactive approach
that leverages the opportunistic protocols implemented in
DisService with predictions and careful prioritization of
information that has to be disseminated. These characteristics
make DisServicePro particularly suitable for disseminating
situational awareness and on-demand information. The main
contributions of this work are summarized as follows:

An adaptable information model: DisServicePro models the
context and mission of each user and the content of
information traveling in the network in order to
anticipate the future needs of the users. The model is
flexible and adapts to mission-specific requirements.

Innovative replication and forwarding policies:
DisServicePro proactively sends information to the
nodes ahead of time by taking advantage of an efficient
combination of replication and forwarding policies.

Proactive push and pull protocols: As new information
becomes available, DisServicePro matches it against
the mission and user context profile and pushes
relevant information to the selected nodes.

Information anticipation through predictions: Information
anticipation improves the data access time and
decreases the transmission overhead when the system
correctly chooses to not send irrelevant information.
DisServicePro uses a distributed learning algorithm
that learns and follows the evolution of the users’
preferences over time. The learned preferences are
utilized to infer which information is relevant in real
time.

The 2010 Military Communications Conference - Unclassified Program - Networking Protocols and Performance Track

978-1-4244-8180-4/10/$26.00 ©2010 IEEE 561

Dynamic context-aware information prioritization:
DisServicePro dynamically prioritizes the information
being exchanged both to a user as well as across users.
The prioritization takes into account both the policies
and the predictions.

The rest of the paper is organized as follows. Section II
reviews related work. Two motivating scenarios are presented
in section III. Then, section IV describes the DisServicePro
architecture. Section V presents DisServicePro capabilities.
Details about the performance evaluation are given in section
VI. Finally, section VII presents conclusions and discusses
future work.

II. RELATED WORK
Approaches that use machine learning for the purpose of

information dissemination can be found in [4] and [5]. The
ADAMANT framework proposed in [4] uses machine learning
algorithms to improve adaptability of Pub/Sub systems in
dynamic environments. In particular, three algorithms (decision
tree, neural network, and linear logistic regression classifier)
are trained off-line and their performance in predicting and
configuring the most suitable transport protocol given the
environmental constraints are compared. In contrast,
DisServicePro aims to enhance the Pub/Sub approach by
proactively sending information ahead of time and exploiting
on-line learning. In [5], an approach to disseminate situation
awareness information in MANETs is presented. The decision
to forward or drop data is distributed among the peers, which
prioritize the information based on its probability of being new
to target nodes. The information novelty is learned locally by
each peer using the proposed MALENA algorithm that uses a
sliding window approach to train a machine learning algorithm
on-line. This approach differs from DisServicePro in the type
of information being disseminated. Disseminating on-demand
information poses extra challenges, since the nodes’ interests
need to be modeled, learned, and made available to other
nodes. Moreover, information has to be sent just to interested
nodes in a timely manner.

Other approaches in the literature address the challenges of
dynamic MANET environments by implementing ad-hoc
policies and protocols. An interesting approach is proposed in
[7]. The introduced RANDI algorithm takes into account
resource constraints in terms of energy, bandwidth, and
storage. The information is disseminated using a combination
of on-demand query requests and replication policies that pre-
stage the newest data on popular nodes. The algorithm also
dynamically prioritizes the information based on its size and
popularity. Another approach, called CSI [3], represents
communication targets by behavioral profiles instead of
identities. The profiles represent nodes’ mobility in
spatiotemporal patterns and are calculated off-line, assuming
that they remain stable for several days. When sending
information, nodes need to specify the target profile recipient.
The information is forwarded based on a gradient ascent policy,
assuming that nodes with similar profiles are spatially close to
each other. When calculation of the target location is not
possible, a heuristic dissemination algorithm is used.
DisServicePro approach differs from all of them. In
DisServicePro, the dynamic prioritization takes into account

both the content of the information and the target node’s
interests learned on-line. Moreover, in DisServicePro, the
information dissemination is proactive and takes advantage of a
combination of both pull/push and replication/forwarding
mechanisms.

Techniques for pre-staging information are also studied in
different contexts. An interesting approach is described in [9],
where the goal is to pre-fetch web pages that the user is likely
to request in the future on the client node. Two kinds of
predictors are utilized to decide which pages to pre-fetch
among millions of links stored in a hash table on the local
client. The first predictor is based on the PPM (Prediction by
Partial Matching) algorithm and analyzes the history of
previously visited pages, while the second one is composed of
different content-based policies. Notice that here the context
comprises two nodes (client and server) connected over the
Internet, so there is no need to address the issues typically
related to tactical networks and resource constrained nodes.

Approaches that study learning in dynamic environments
and distributed learning have also been investigated. In [11], an
algorithm to deal with concept drift using multiple classifiers is
proposed. A new classifier is generated every time a concept
drift is detected. Then, the classifiers are combined through
dynamically weighted majority voting, where weights are
determined based on classifiers’ age and accuracy on current
data. Prior classifiers are not discarded, allowing the system to
learn cyclical environments. A different method is proposed in
[6], where concept drift is handled by detecting changes in the
probability distribution of the incoming data. The error rate of
the learning algorithm is traced during time and, when it
decreases under a threshold, a concept drift is detected and a
new classifier is constructed. Given the constraints of tactical
networks, the first approach is not suitable. Since the classifiers
are never discarded, the approach is not scalable in terms of
memory consumption. Moreover, all the classifiers need to be
consulted in order to obtain a prediction, meaning that, in a
distributed environment, the bandwidth consumption increases
as a function of the number of classifiers to exchange. More
interesting is the idea to modify the size of the training dataset
window based on concept drift detection as proposed in [6].
However, the test section of the paper shows a drawback. The
approach presents peaks of very low accuracy in
correspondence to concept drifts, compared to a single
classifier that has more stable performance. For DisServicePro,
the performances stability during time is a valuable property
that permits trusting the classifier predictions. In [10], Núñez
presents an interesting approach that exploits machine learning
to predict future faults in the context of network management.
Like DisServicePro, the system needs to share information
collected from different sources. The collected information is
stored in a centralized repository that manages the regression
trees. The information is sent in the form of rule-sets. The
authors' assumption of fixed nodes and wired connections, and
the usage of a centralized repository are not suitable for
DisServicePro.

III. MOTIVATING SCENARIOS
Two scenarios are considered to help understand the

requirements targeted by DisServicePro. In both of these

562

scenarios, the assumption is that the force being deployed
carries portable computer devices (e.g., ruggedized Personal
Digital Assistants (PDAs), laptop computers, or other man-
wearable or man-portable computers), which will be
generically referred to as nodes. These nodes have network
connectivity that is limited and intermittent, caused by lack of
radio coverage, resource contention, or the desire to operate in
a clandestine manner and maintain radio silence. While on the
mission, soldiers need to access a variety of information
including maps, aerial reconnaissance, other sensor data (e.g.,
from unattended ground sensors), intelligence reports, and
blue and red force tracking. Some of this data may be pre-
loaded onto the nodes (e.g., maps of areas where the soldiers
are expected to be, as determined by the mission). However,
the nodes will need to receive new data after deployment for
two reasons. The first possibility is that new data may become
available that did not exist prior to deployment or was not
accessible prior to deployment. The second possibility is that a
change in the mission requirements or the mission execution
(e.g., the soldiers having to deviate from the pre-planned path)
requires new data to be sent to the nodes.

The first scenario involves a Non-combatant Evacuation
Operation (NEO), where forces are sent into an area to secure
an objective and evacuate identified personnel from an
unstable or otherwise threatened area. A recent example of a
NEO was Lebanon during 2006, when personnel were
evacuated from Lebanon to Cyprus. One important
characteristic of such scenarios is that the duration of the
operation is typically short – on the order of hours instead of
days. Shorter duration missions provide the possibility that
prior to deployment of a force, the systems being carried by
the soldiers can be preloaded with information relevant to the
mission. Once the force is deployed in theatre, the system will
need to automatically retrieve information that is relevant to
the force and to each member of the force. For example, any
information gathered from ground (or other) sensors that are
along the path being traversed would be of interest. Any new
information available about enemy or friendly activity or
forces will need to be made available as well. Such
information may originate from the operations center or from
other teams or missions that are overlapping in space and or
time. While the scope for the number of changes or deviations
from the planned mission may be small, it is still important to
push new relevant information to the force post deployment.

The second scenario involves a typical Ship to Objective
Maneuver (STOM) that may last for several days. As in the
NEO case, nodes can be pre-loaded with mission-relevant
information while the force is on the ship. However, given the
long duration of such missions, it is much more likely that
there are changes to the mission and orders, and consequent
adjustments to planned activities. In such cases, new map,
reconnaissance, and other relevant information will need to be
retrieved by the nodes. New information may also become
available post deployment, either back at the operations center
or from some other unit in theatre. If so, this information
needs to be pushed to the nodes. Also, given the longer
duration of these missions, the deployed force may have more

autonomy in the planning and strategy for the execution of the
mission, which will require a flexible information retrieval
mechanism.

IV. DISSERVICEPRO ARCHITECTURE
DisServicePro extends DisService with proactive

capabilities and it is integrated in the Agile Computing
middleware [2]. The Agile Computing middleware is a set of
components designed to support communications and
computation in tactical edge networks. DisService is the
component dedicated to information dissemination. DisService
opportunistically exploits available storage and
communications to increase information availability in the
network and to achieve disruption tolerant behavior.

As shown in Figure 1, DisServicePro architecture is built
upon DisService and utilizes its services. The Information
Store is the structure on each node that maintains any
information that is retrieved by the node or pushed to the node.
After being used by the application, information may be
retained by the Information Store for future use by other nodes.
It may also temporarily store information that it is transferring
from one node to another, acting as a courier, even if the local
user may not need the information. DisServicePro exchanges
data when its content is considered suitable in the operative
contexts. In particular, two modules are defined: Local Node
Context and the Peer Node Context. The Local Node Context
contains information relevant to the local user and his or her
mission. The Peer Node Context contains the same information
as the Local Node Context, but for remote peer nodes. The
context of peer nodes is useful to proactively push/pull
information to/from other nodes preemptively. In particular, the
Information Push component manages the proactive push of
information to other nodes using the peer node contexts and the
metadata associated with the information.

Figure 1: DisServicePro Architecure

On the other hand, the Information Pull component handles the
proactive pull of information previously made available on the
network. In addition, the Context Manager exchanges the local
node context with peers and stores contexts received by other

563

nodes encountered during the mission. All the information
exchanged by DisServicePro is dynamically prioritized by the
Scheduler based on the user's context and preferences. The
Scheduler handles a queue of outgoing data ordered by priority.
The Expiration Controller manages the deletion of information
stored in the local cache. Information is usually deleted when
expired but other policies are possible. The Replication
Controller uses the proactive pushing and pulling mechanisms
to disseminate information; moreover, it permits the exchange
of node context updates using special control messages.
Finally, the Forwarding Controller defines policies to handle
retransmission of data in cases in which the node acts as a
courier for other nodes. Applications on the same node can
communicate with the same instance of DisServicePro through
the Proxy Server component. Applications written in C++, C#,
and Java are supported.

V. DISSERVICEPRO CAPABILITIES
This section describes the important features of

DisServicePro, which combine together to provide proactive
information dissemination.

A. Adaptable Information Model based on the Specific
Mission Context

In order to understand the users’ interests and correctly
anticipate their needs, DisServicePro collects information about
both the information being exchanged in the network and the
users’ behavior. Modeling such information in an accurate,
precise way is a key requirement for obtaining good
performance: the better this model fits the characteristics of
users and information, the more effective the predictions made
by DisServicePro. On the other hand, operations in particular
areas could potentially establish new types of information and
user characteristics. For this reason, the DisServicePro
information model is flexible and allows applications to
customize and adapt it to their specific needs. The information
model managed by DisServicePro is composed of two different
parts: the metadata, a header attached to each discrete piece of
information traveling in the network, and the node context
which describes the user's tasks and mission. The metadata
contains information about the content and the purpose of the
information being sent. The default metadata has a few fixed
attributes that model general characteristics shared by all
information types. These attributes are: Message ID, Receiver
Timestamp, Source Timestamp, Source ID, Expiration
Timestamp, Relevant Missions, Area of Interest, Location,
Pedigree, and Importance. Depending on the mission, these
attributes can be extended with other relevant information. For
instance, in all the tests presented in this paper, we have
customized the metadata by adding these attributes: Data
Content, Data Format, Classification, Description, and Source
Type. Furthermore, the application can indicate which of the
attributes should be utilized by the learning algorithm to infer
the user's interests and which should not, providing a fine-
tuning mechanism for the information model. On the other
side, the node context models the characteristics of the users
generally utilized in STOM and NEO operations. The attributes
currently utilized in the node context are: Node ID, Mission,
Team, Role, Useful Distance, Paths, Current Location, and
Preferences. The Preferences attribute represents the node's

interests that are automatically learned and Paths is a list of the
node’s possible projected paths. A typical path is a sequence of
points on a map, called way-points, which can be GPS
coordinates or can be calculated with azimuths and distances.
Each point could be named or described with notes. Points may
also have associated a date and time in order to better
coordinate the movements of different units on the field. This
information is particularly useful to predict the expected time
to use of information, but is not always present.

B. Replication and Forwarding Mechanisms
As illustrated in Figure 1, DisService offers the possibility

of customizing the behavior of its expiration, forwarding, and
replication mechanisms by implementing appropriate
controllers. DisServicePro extends DisService and implements
its own version of these controllers. The Replication Controller
has the objective of increasing the availability of the
information in the network. Replication takes place any time
the node encounters a new peer and any time new information
is available at the node. Replication of data is performed using
a combination of pull and push approaches. In particular,
concepts of path and team are exploited, permitting the
Replication Controller to find the right redundancy balance
inside the team and among peers sharing the same path. The
Forwarding Controller has the objective of improving the
timely dissemination of the information in the network.
Forwarding takes place any time new data is received. It
employs policies that take into account both the push and pull
algorithms, prioritization, as well as information about the
network topology provided by DisService to decide whether to
forward a data to a certain node.

C. Information Anticipation
The ultimate goal of DisServicePro is to minimize

information access latency for users in tactical edge networks.
The approach taken by DisServicePro is to anticipate
information requests and pre-stage the information ahead of
time, minimizing the impact of degraded or lost connectivity to
the node. Anticipating relevant information is a challenging
task, particularly in the case of distributed and heterogeneous
systems. The relevant information is selected by ranking its
metadata against a set of policies that were specifically
designed to fit typical military mission requirements. Each
policy ranks a specific aspect of the metadata and gives a
measure of how much the information fits the policy
requirements. The ranks generated by the single policies are
then combined to obtain the information priority, as detailed in
section V.G. The policies currently implemented in
DisServicePro are the following:

Distance path-metadata: this policy ranks the metadata
based on the distance between the geographical area of
relevance of the information and the user’s projected
path.

Expected time-to-use: this policy tries to infer when the user
will need the information in the future. The prediction
is based on the timestamps that mark the way-points of
the projected path. The policy computes the expected
time to use of the information based on the timestamp
of the waypoint closest to the area of interest of the
informaion. Unfortunately, the timestamps are not

564

always available. In this case, DisServicePro is able to
calculate the missing timestamps using distances
between consecutive waypoints and ranks the
information accordingly.

Expiration time: each piece of information has an
associated expiration time that indicates for how long
the information is expected to be useful. This policy
assumes that newer data has higher utility than older
data close to its expiration time, so newer data gets a
higher rank. The policy calculates the percentage of
remaining time with respect to the total expiration time
duration. In this way, information with different
expiration time durations can be compared.

Importance: applications that generate information can
specify an explicit importance value for each data. A
policy takes into account this value.

Although the sole use of these policies provides a
rudimentary form of predictive capabilities, this may not be
enough to produce acceptable performance in a dynamic
environment. For this reason, DisServicePro exploits machine
learning techniques that analyze the usage history of the local
information in order to find patterns from which it extrapolates
rules that match the user’s interests. The machine learning
problem is formulated as follow: each piece of information
stored on the node has an associated usage value which
indicates if the information has been utilized by the user or not.
Given the usage history, the goal of machine learning is to
minimize the error in predicting if new information will be
utilized by the user or not. However, in tactical environments,
maximizing the prediction accuracy is not the only
performance metric and the learning algorithm must ensure
other important characteristics. First, it must guarantee low
resource consumption in terms of computation and storage in
order to adapt to resource-constrained nodes such as small
portable devices (PDAs). Another fundamental requirement is
the capability to learn incrementally and to produce accurate
predictions online and in real-time. Since there may be changes
in the mission and orders, and consequent adjustments in
planned activities and information requirements, the learning
algorithm needs to follow the evolution of the user preferences
during time and adapt quickly to these changes. Moreover, we
assume that in most of the cases, training data will not be
available prior to the mission. Finally, the learned interests
model has to be compact and understandable in order to be
easily shared with other peers improving the overall knowledge
of the system. Given metadata as input, the goal of the machine
learning algorithm is to classify the information in two
categories: useful and not useful. The algorithm should also
provide a score value indicating its confidence in the
prediction. One of the best known machine learning algorithms
to address this type of problem are decision trees. In particular,
we found the C4.5 algorithm [8] to be well suited for our
requirements. Two alternative algorithms have been
implemented: Cycle Algorithm and Window Algorithm. Both of
them are based on the C4.5 algorithm and have been designed
to fit all the requirements listed above. The Window Algorithm
is based on the sliding window principle. Training data is
collected over time as entries are inserted in the training
window one at a time. Once the data becomes too old, it is

discarded, leaving space for newer data in the FIFO queue.
This simple principle allows the algorithm to forget old data
and learn from new data, following the evolution of the user’s
interests over time. Discarding old data also decreases the
storage requirement. However, while building a decision tree,
the size of the training dataset influences the prediction
accuracy. Classical data mining approaches use very large
datasets and do not suffer for small changes in the dataset size.
But in DisServicePro, the training window is constrained in
order to save resources. As a consequence, changes in the
window size may have an impact on the performance. The
ambitious goal of the Cycle Algorithm is to reduce the window
size without losing prediction accuracy. We observed that not
all the new data collected during a given time adds additional
information to the decision tree. The idea behind the Cycle
Algorithm is to test the current decision tree on the new data for
each iteration and discard correctly classified data. On the other
hand, the misclassified data is added to the training window
providing a feedback that helps the decision tree to correct past
errors.

Both the algorithms output their confidence value for each
prediction. These values are used to rank the metadata, which is
then combined with the ranks generated by the other policies.

D. Sharing the Learned Interests with Other Peers
In order to improve their predictive capabilities, the peers

share both their local node context and the knowledge
acquired by the learning algorithm. Sending the history of
previously requested information that represents the user's
interest would be too expensive, hence only the rule sets
generated by the learning algorithm are exchanged. Since
maintaining the continuously updated learned interests is
crucial for the overall system performance, DisServicePro
implements a custom knowledge exchange protocol that has
been designed to be mainly event-driven. The protocol also
exploits periodic updates to improve reliability. In order to
save bandwidth, DisServicePro exchanges mostly small
update messages that contain a portion of the node’s interests.
The user's interests are split into three sections, each of them
identified by a version number. When one or more sections
change locally at the user node, the relative updates are
immediately propagated in the network. For example, the most
common and frequent update is the user's GPS position.
Therefore, small messages containing the current versions and
the node GPS position are periodically broadcasted. This
policy improves reliability because if an update message gets
lost, the peers can request it again once they receive the
periodic message. Moreover, some nodes, for instance ground
sensors, do not follow a path, but they stay fixed on the
ground. For these nodes, sending periodic messages is
convenient to make the other peers aware of their existence,
since they generally do not change their interests over time.
The whole node context needs to be exchanged only when two
nodes interact for the first time. The next time they come into
contact, the peers first exchange the latest version numbers of
each section that has previously received from the other node
and then, if necessary, exchange any update sections.

The proactive pull, the proactive push, and the users’
interest exchange protocols are completely independent of

565

each other. Thanks to this design, it is not necessary to update
the interests while pulling or pushing the data, saving time and
bandwidth in both cases.

E. Proactive Pushing of Information
In tactical wireless environments, nodes experience

frequent disconnections and changes in network topology. In
such situations, nodes do not have a clear and updated
understanding of neither the information needs nor the
information content of other nodes. For this reason, information
anticipation happens in a distributed manner. Each peer takes
advantage of DisServicePro predictive capabilities to infer its
own information needs and pull the data ahead of time. At the
same time, thanks to the distribution of the node contexts and
the learned interests in the network, the nodes are able to
anticipate the other peers’ needs and proactively push useful
information to them. Each peer actively seeks both the
information locally generated and the data collected from other
nodes to automatically infer when the information should be
replicated or forwarded to other nodes based on their interests.
The decision to proactively push or not to push information to a
target node is based mainly on the target node’s learned
interests, but also the interests of nodes with similar
characteristics (for instance, nodes with the same role or nodes
coming from areas close to the target node’s projected path) are
taken into account. The proactive push takes place also when
some nodes receive updated interest information from a peer.
For instance, a possible scenario is when, due to a change in the
mission, a node switches from its main projected path to an
alternative path. In this case, the peer node has partially
changed its node context meaning that now it is probably
interested in different types of information.

The proactive push mechanism is completely event-driven
and it has been designed to react immediately to any change in
the environment. It also ensures the minimum delay in
obtaining the needed information because each node replicates
and forwards its data as soon as it becomes available without
wasting time. These characteristics make the proactive push
particularly fast and allow nodes to take advantage of resource-
rich peers, even for very short periods of time.

F. Proactive Pulling of Information
Information anticipation happens also at the end-user

nodes. Each node anticipates information the user may need
based on the learned interests and proactively pulls the
information ahead of time. The proactive pull is particularly
appropriate to disseminate large or otherwise problematic
information. This information is made available to other peers
by disseminating its associated metadata, while the
information itself remains on the source node. Each node that
receives the metadata may decide whether to pull the data
ahead of time or not. The decision is based on both the user
node interests and also similar nodes' interests as in the push
approach. If the user node decides to proactively pull the data,
it sends a direct request to the source node, which answers
with the desired information.

The proactive pull has an event-driven design, allowing it
to immediately react not only to new metadata disseminated in
the network, but also to any change in the user node’s
interests. When a drift in the user's interests is detected,

DisServicePro searches the local cache and analyzes the
metadata recently received to check whether the associated
information has now become of interest to the user.

In DisServicePro, the push and pull mechanisms
disseminate different types of information. As a consequence,
they are independent of each other and they can apply
customized policies for large and small data. For instance, in
scenarios where the available bandwidth is highly constrained
it may happen that there is not enough time to send all the
interesting information. In such scenarios, the proactive pull
may decide to focus on high priority information and to not
send information with lower priority in order to save
bandwidth, while the proactive push, in the same scenario,
may decide to wait and try to send the low priority information
after a while.

The pull component also handles specific search requests
provided by the user. Users can express search queries over
the metadata content, which are evaluated both locally and
across the other nodes in the network.

G. Dynamic Information Prioritization and Scheduling
As described earlier, tactical networks are constrained in

terms of connectivity, bandwidth, and latency. This implies that
there may not be sufficient bandwidth to push or pull all the
information that DisServicePro predicts as useful for the target
nodes. DisServicePro addresses this challenge by dynamically
prioritizing all the information being sent both to a user as well
as across users. The prioritization takes into account the results
given by all the policies and the decision tree predictions
described in section V.C. These results are not binary values,
but continuous values effectively ranking information based on
the different aspects evaluated. These ranks are combined
together through a weighted sum to obtain the priority value.
The prioritization is dynamic, meaning that the information
priority is determined every time the push or pull mechanism
decides to send it. As a consequence, the same information
might assume different priorities depending on which node is
the target, and the current situation under which the data is
sent. For instance, when information becomes available on a
node, DisServicePro may decide to push it to three different
targets if it predicts that the information is interesting for all the
three nodes. As a consequence, it calculates three different
priorities for the same information, one for each target node. If
the information is more important or urgent for a certain node,
this node has assigned the highest priority and it is served first.
Another example is when a new peer connects to the network.
In this case, DisServicePro may decide to push to that node
more than one piece of information. Each piece is then
prioritized and the one with the highest priority is sent first. As
these examples illustrate, it can often happen that more than
one piece of information needs to be sent at the same time. This
data is handled by the DisServicePro scheduler, which orders
the information to be sent by priority, and arranges it in an
output queue. In the current implementation the policies
utilized by DisServicePro are fixed. The prioritization process
could be further improved by using policies dynamically
generated at runtime. For instance, a policy may decide that
soldiers being part of the same team have higher priority than
soldiers of other teams, or that soldiers who are in contact with

566

and currently engaging the enemy have higher priority. The
runtime policies may specify the relative weights of these
conditions thereby ensuring fine-grained control.

VI. DISSERVICEPRO PERFORMANCE EVALUATION
This section presents some initial performance results of

DisServicePro. Two sets of experiments were performed. The
first set evaluated the performance of the pre-staging
algorithm, without taking into account any learning. The
second set evaluated the learning aspects of DisServicePro.

A. Pre-Staging Evaluation
The purpose of the pre-staging evaluation is to quantify the

benefit, in terms of access time, of the proactive approach over
a purely on-demand approach. The test simulated a simplified
NEO mission with two nodes: a source node and a target node.
The source node represents a COC (Command Operations
Center); it stays in a fixed location and is pre-loaded with
information items, each being approximately 10 KB in size.
The target node represents a team in the mission situation: it
moves along a path and periodically requests new information
about the area surrounding its current location. The path is
modeled as a sequence of 20 way-points; every 30 seconds, the
target node reaches a subsequent way-point, updates
DisServicePro with the coordinates of the current position, and
sends out a request for all the information of interest within an
800m radius of the current position. Note that the timeline was
accelerated only to speedup execution time. Upon receiving the
request from the target node, the source node replies with all
the information that matches the request that have not been
already sent. The average delivery-time to retrieve an object
that matches a request, the number of objects retrieved over the
duration of the mission, and the percentage of hits and misses
are measured. To expedite testing, the interval of time between
the 20 way-points (30 seconds) and the items of information
requested at each way point (approximately 12) were
proportionally reduced by a factor of 10. The size (10 KB) was
chosen for the information because this size is representative of
the average data size typically transmitted in a tactical network
environment. In order to simulate a realistic environment and
not to unfairly stack the pre-staging test, a path with partially
overlapping areas is used. In this way, even without pre-
staging, it is possible for the target nodes to find information of
interest for the current area that are locally cached due to a
previous retrieval. The following bandwidth settings were used
with both pre-staging and non-pre-staging approaches: 56
Kbps, 256 Kbps, and 512 Kbps. The 56 Kbps link is
representative of the typical bandwidth for a portable
SATCOM link, whereas 256 Kbps is the typical bandwidth for
a UAV link and 512 Kbps is the typical bandwidth for high-
capacity SATCOM link. The metadata was generated
randomly. The list the possible values that the attributes can
assume are as follows:

Source: node_A, node_B.
Expiration_Time: 300000, 400000.
Relevant_Missions: mission_X, mission_Y.
Left_Upper_Latitude: continuous values within the area.
Left_Upper_Longitude: same as above.
Right_Lower_Latitude: same as above.
Right_Lower_Longitude: same as above.

Location: area_A, area_B, area_C, area_D,
 area_E.
Data_Content: Map, Sensor_Data, Squad_Report,
 COC_Report, UAV_Image.
Data_Format: JPG, MPG, XML, TXT.
Classification: Unclassified, FOUO, ITAR, Secret,
 Top_Secret.
Description: message_type1, message_type2.
Node_Type: Video_Sensor, Acustic_Sensor,
 Sismic_Sensor, UAV, COC,
 Marine_Squad.
Importance: 1, 2, 3, 4, 5.

The receiver is interested only in the subset that matches the
following ruleset:
NodeType ε {COC, Marine_Squad, UAV} AND
Data_Content ε {Squad_Report, COC_Report, UAV_Picture} AND
Classification ε {FOUO, ITAR, Unclassified, Secret}

OR

NodeType ε {Video_Sensor, Acustic_Sensor, Sismic_Sensor} AND
Data_Content ε {Sensor_Data} AND
Data_Format ε {MPG, JPG, XML}

OR

NodeType ε {COC, UAV} AND
Data_Content ε {Map, UAV_Picture, Sensor_Data}

To summarize, the test parameters were as follows:

Path: composed of 20 way points
Request Interval: 30 seconds
Radius: 800m
Payload Size: 10KB
Number of Messages: 1000 (for the 512 Kbps and 256
 Kbps cases) 100 (fro the 56 Kbps
 case)
Link Connectivity: 56 Kbps, 256 Kbps, 512 Kbps

The results shown below indicate a significant
improvement in the information retrieval latency. In addition to
the average latency, we measured the number of hits, the
number of misses, and the number of false positives. False
positives occur when DisServicePro incorrectly predicts and
pushes information that is never requested by the end user
node. In the first set of results, without pre-staging, there are no
false positives. Also, there are some hits even without pre-
staging because the end user node may request an item that it
has already requested in the past. The results show that with
pre-staging, the average latency is improved by a factor of
6.28, 4.12, and 6.75 times respectively, for the three different
links of 56 Kbps, 256 Kbps, and 512 Kbps.

Table 1: Resuts Without Pre-Staging

Link
Bandwidth

Average
Latency
(msec)

STD
deviation

#hits #Misses #False
Positives

56 Kbps 8726 16857 15 25 0

256 Kbps 11344 17914 57 123 0

512 Kbps 10131 17421 57 123 0

567

Table2: Results With Pre-Staging

Link
Bandwidth

Average
Latency
(msec)

STD
deviation

#Hits #Misses #False
Positives

56 Kbps 1389 4666 36 6 26

256 Kbps 2749 8296 307 43 218

512 Kbps 1502 5360 332 30 218

Note that with pre-staging, there are also many more
requests overall, given that no time is spent retrieving
information when there is a hit.

B. Learning Evaluation
In the learning evaluation the two iterative algorithms have

been compared against each other and against other algorithms.
All the algorithms were tested on the Adult dataset obtained
from the UCI Repository of Machine Learning databases [12].
This dataset is a collection of census information of people
from different nations, such as sex, marital status, age,
occupation etc. The task consists of classifying the set in
people whose annual income is higher of 50000$ or lower.

Algorithm Error Rate

Cycle Algorithm 13.98%

Window Algorithm 14.18%

C4.5 Original 15.54%

C4.5 Rules 14.94%

Voted ID3 (0.6) 15.64%

Voted ID3 (0.8) 16.47%

NBTree 14.10%

FSS Naïve Bayes 14.05%

IDMT (Decision Table) 14.46%

Naïve-Bayes 16.12%

Nearest-Neighbor (1) 21.42%

Nearest-Neighbor (3) 20.35%
The results obtained with Cycle Algorithm and Window

Algorithm refer to the algorithms run with the settings as
follow: for the C45 Cycle Algorithm:

initial window: 200 items
maximum window: 1200 items
increment: 200 items
maximum errors: 20% of increment
initial cycle window: 100% of actual window

For the C45 Window Algorithm:

initial window: 200 items
maximum window: 270 items
increment: 70 items

These results, while promising, are preliminary and have
not yet been integrated into the overall DisServicePro
application.

The results of error rate for the other algorithms are
publicly available on the UCI Repository website.

VII. CONCLUSIONS AND FUTURE WORK
This paper presented DisServicePro, a proactive peer-to-peer
dissemination service for tactical network environments that
supports information on-demand. The architecture,
motivational scenarios and initial experimental results are
presented. The experimental results show the benefits of the
proactive approach, in terms of average delivery time and the
potential of the implemented learning algorithms. Future work
will attempt to exploit the network characteristics to efficiently
disseminate information in large MANETs. Topology state
information and bandwidth prediction algorithms are going to
be integrated in the system to address the current scalability
issues. Moreover, DisServicePro approach is currently being
compared to other recently proposed algorithms, including
content-based and sequence-based pre-fetch prediction
algorithms, to determine which maximizes the tradeoff
between cache hit rate and bandwidth utilization.

ACKNOWLEDGEMENTS

This research has been sponsored by the Office of Naval
Research under grant N000140910012.

REFERENCES
[1] N. Suri, G. Benincasa, S. Choy, S. Formaggi, M. Gilioli, M. Interlandi, J.

Kovach, S. Rota, and R. Winkler, “Disservice: a peer-to-peer disruption
tolerant dissemination service”, MilCom, Boston, MA, 2009.

[2] N. Suri, M. Marcon, R. Quitadamo, M. Rebeschini, M. Arguedas, S.
Stabellini, M. Tortonesi, C. Stefanelli, “An adaptive and efficient peer-
to-peer service-oriented architecture for MANET environments with
agile computing”, in proceeding of the second IEEE Workshopon
Autonominc Computing and Network Management, 2008.

[3] W. Hsu, D. Dutta, and A. Helmy, “Csi: a paradigm for behavior-oriented
delivery services in mobile human networks” CoRR abs/0807.1153,
2008.

[4] J. Hoffert, D. Mack, and D. Schmidt, “Using machine learning to maintain
pub/sub system qos in dynamic environments”, 8th Workshop on
Adaptive and Reflective Middleware, 2009.

[5] B. Xu, O. Wolfson, and C. Naiman, “Machine learning in disruption
tolerant manets”, TAAS 4, 2009.

[6] G. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with drift
detection”, Brazilian Symposium of Artificial Intelligence, 2004.

[7] O. Wolfson, B. Xu, and R. M. Tanner, “Mobile peer-to-peer data
dissemination with resource constraints”, MDM, 2007, pp. 16-23.

[8] R. Quinlan, “C45: programs for machine learning”, Morgan Kaufmann
Publishers, Inc., 1993.

[9] W. Zhang, D. B. Lewanda, C. D. Janneck, and B. D. Davison,
“Personalized web prefetching in Mozilla”, 2003, unpublished.

[10] M. Nunez, “Collective learning of knowledge for predicting events”,
Universidad de Malaga, Spain, unpublished.

[11] M. Karnick, M. D. Muhlbaier, and R. Polikar, “Incremental learning in
non-stationary environments with concept drifts using a multiple
classifier based approach”, International Conference on Pattern
Recognition, Glassboro, U.S., 2008.

[12] C. Blake, E. Keogh, and C. J. Merz, UCI Repository of Machine
Learning databases, online reference: http://archive.ics.uci.edu/ml/

568

