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Abstract— Tactical networks are highly dynamic environments 
characterized by constrained resources, limited bandwidth, and 
intermittent connectivity. The limits on communication cause 
significant delays in the delivery of information to edge users. 
This paper focuses on an approach to improve the timeliness of 
access to information via prediction and pre-staging. The 
approach also incorporates a learning mechanism to dynamically 
adapt the information prediction algorithm. This capability has 
been integrated into the DisService peer-to-peer information 
dissemination system, which opportunistically exploits any 
available connectivity to address the challenging environment. 
The extended system, called DisServicePro (for Proactive) 
predicts the information needs of edge users using their mission 
description, including the routes that users may take as part of 
the mission. 

DisServicePro extends the capabilities of DisService by efficiently 
and proactively disseminating information to the edge nodes by 
means of replication and forwarding policies. The 
proactive behavior is the result of the integration of policies and 
a distributed learning algorithm that takes into account the 
history of previously requested information, along with the 
characteristics of the target nodes and the mission. As new 
information becomes available, DisServicePro matches it against 
the mission profile and pushes relevant information to the edge 
nodes. Information that is selected to be pushed is sorted based 
on the predicted time to use as well as the confidence value of the 
prediction. 

Keywords: tactical networks, peer-to-peer, proactive information 
dissemination, decision trees, dynamic information prioritization, 
pre-staging, information on-demand. 

I. INTRODUCTION 
Tactical military environments are characterized by 

dynamic topologies populated with highly mobile wireless 
devices that are operated with limited range, processing power, 
memory, and storage. This results in intermittent connectivity 
and frequent changes in bandwidth and latency. In spite of 
these challenges, users require robust, reliable and timely 
information dissemination on-demand. In these environments it 

is critical to fully exploit sporadic temporary connections when 
they are available. In this paper we present DisServicePro, a 
proactive information dissemination service for tactical 
networks. In previous work [1], we described DisService, a 
peer-to-peer information dissemination system that 
opportunistically discovers and exploits available connections 
and uses a Pub/Sub approach to disseminate information 
through broadcast and multicast. DisServicePro extends 
DisService capabilities by implementing a proactive approach 
that leverages the opportunistic protocols implemented in 
DisService with predictions and careful prioritization of 
information that has to be disseminated. These characteristics 
make DisServicePro particularly suitable for disseminating 
situational awareness and on-demand information. The main 
contributions of this work are summarized as follows: 

An adaptable information model: DisServicePro models the 
context and mission of each user and the content of 
information traveling in the network in order to 
anticipate the future needs of the users. The model is 
flexible and adapts to mission-specific requirements. 

Innovative replication and forwarding policies: 
DisServicePro proactively sends information to the 
nodes ahead of time by taking advantage of an efficient 
combination of replication and forwarding policies. 

Proactive push and pull protocols: As new information 
becomes available, DisServicePro matches it against 
the mission and user context profile and pushes 
relevant information to the selected nodes. 

Information anticipation through predictions: Information 
anticipation improves the data access time and 
decreases the transmission overhead when the system 
correctly chooses to not send irrelevant information. 
DisServicePro uses a distributed learning algorithm 
that learns and follows the evolution of the users’ 
preferences over time. The learned preferences are 
utilized to infer which information is relevant in real 
time. 
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Dynamic context-aware information prioritization: 
DisServicePro dynamically prioritizes the information 
being exchanged both to a user as well as across users. 
The prioritization takes into account both the policies 
and the predictions. 

The rest of the paper is organized as follows. Section II 
reviews related work. Two motivating scenarios are presented 
in section III. Then, section IV describes the DisServicePro 
architecture. Section V presents DisServicePro capabilities. 
Details about the performance evaluation are given in section 
VI. Finally, section VII presents conclusions and discusses 
future work. 

II. RELATED WORK 
Approaches that use machine learning for the purpose of 

information dissemination can be found in [4] and [5]. The 
ADAMANT framework proposed in [4] uses machine learning 
algorithms to improve adaptability of Pub/Sub systems in 
dynamic environments. In particular, three algorithms (decision 
tree, neural network, and linear logistic regression classifier) 
are trained off-line and their performance in predicting and 
configuring the most suitable transport protocol given the 
environmental constraints are compared. In contrast, 
DisServicePro aims to enhance the Pub/Sub approach by 
proactively sending information ahead of time and exploiting 
on-line learning. In [5], an approach to disseminate situation 
awareness information in MANETs is presented. The decision 
to forward or drop data is distributed among the peers, which 
prioritize the information based on its probability of being new 
to target nodes. The information novelty is learned locally by 
each peer using the proposed MALENA algorithm that uses a 
sliding window approach to train a machine learning algorithm 
on-line. This approach differs from DisServicePro in the type 
of information being disseminated. Disseminating on-demand 
information poses extra challenges, since the nodes’ interests 
need to be modeled, learned, and made available to other 
nodes. Moreover, information has to be sent just to interested 
nodes in a timely manner. 

Other approaches in the literature address the challenges of 
dynamic MANET environments by implementing ad-hoc 
policies and protocols. An interesting approach is proposed in 
[7]. The introduced RANDI algorithm takes into account 
resource constraints in terms of energy, bandwidth, and 
storage. The information is disseminated using a combination 
of on-demand query requests and replication policies that pre-
stage the newest data on popular nodes. The algorithm also 
dynamically prioritizes the information based on its size and 
popularity. Another approach, called CSI [3], represents 
communication targets by behavioral profiles instead of 
identities. The profiles represent nodes’ mobility in 
spatiotemporal patterns and are calculated off-line, assuming 
that they remain stable for several days. When sending 
information, nodes need to specify the target profile recipient. 
The information is forwarded based on a gradient ascent policy, 
assuming that nodes with similar profiles are spatially close to 
each other. When calculation of the target location is not 
possible, a heuristic dissemination algorithm is used. 
DisServicePro approach differs from all of them. In 
DisServicePro, the dynamic prioritization takes into account 

both the content of the information and the target node’s 
interests learned on-line. Moreover, in DisServicePro, the 
information dissemination is proactive and takes advantage of a 
combination of both pull/push and replication/forwarding  
mechanisms. 

Techniques for pre-staging information are also studied in 
different contexts. An interesting approach is described in [9], 
where the goal is to pre-fetch web pages that the user is likely 
to request in the future on the client node. Two kinds of 
predictors are utilized to decide which pages to pre-fetch 
among millions of links stored in a hash table on the local 
client. The first predictor is based on the PPM (Prediction by 
Partial Matching) algorithm and analyzes the history of 
previously visited pages, while the second one is composed of 
different content-based policies. Notice that here the context 
comprises two nodes (client and server) connected over the 
Internet, so there is no need to address the issues typically 
related to tactical networks and resource constrained nodes. 

Approaches that study learning in dynamic environments 
and distributed learning have also been investigated. In [11], an 
algorithm to deal with concept drift using multiple classifiers is 
proposed. A new classifier is generated every time a concept 
drift is detected. Then, the classifiers are combined through 
dynamically weighted majority voting, where weights are 
determined based on classifiers’ age and accuracy on current 
data. Prior classifiers are not discarded, allowing the system to 
learn cyclical environments. A different method is proposed in 
[6], where concept drift is handled by detecting changes in the 
probability distribution of the incoming data. The error rate of 
the learning algorithm is traced during time and, when it 
decreases under a threshold, a concept drift is detected and a 
new classifier is constructed. Given the constraints of tactical 
networks, the first approach is not suitable. Since the classifiers 
are never discarded, the approach is not scalable in terms of 
memory consumption. Moreover, all the classifiers need to be 
consulted in order to obtain a prediction, meaning that, in a 
distributed environment, the bandwidth consumption increases 
as a function of the number of classifiers to exchange. More 
interesting is the idea to modify the size of the training dataset 
window based on concept drift detection as proposed in [6]. 
However, the test section of the paper shows a drawback. The 
approach presents peaks of very low accuracy in 
correspondence to concept drifts, compared to a single 
classifier that has more stable performance. For DisServicePro, 
the performances stability during time is a valuable property 
that permits trusting the classifier predictions. In [10], Núñez 
presents an interesting approach that exploits machine learning 
to predict future faults in the context of network management. 
Like DisServicePro, the system needs to share information 
collected from different sources. The collected information is 
stored in a centralized repository that manages the regression 
trees. The information is sent in the form of rule-sets. The 
authors' assumption of fixed nodes and wired connections, and 
the usage of a centralized repository are not suitable for 
DisServicePro. 

III. MOTIVATING SCENARIOS 
Two scenarios are considered to help understand the 

requirements targeted by DisServicePro. In both of these 
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scenarios, the assumption is that the force being deployed 
carries portable computer devices (e.g., ruggedized Personal 
Digital Assistants (PDAs), laptop computers, or other man-
wearable or man-portable computers), which will be 
generically referred to as nodes. These nodes have network 
connectivity that is limited and intermittent, caused by lack of 
radio coverage, resource contention, or the desire to operate in 
a clandestine manner and maintain radio silence. While on the 
mission, soldiers need to access a variety of information 
including maps, aerial reconnaissance, other sensor data (e.g., 
from unattended ground sensors), intelligence reports, and 
blue and red force tracking. Some of this data may be pre-
loaded onto the nodes (e.g., maps of areas where the soldiers 
are expected to be, as determined by the mission). However, 
the nodes will need to receive new data after deployment for 
two reasons. The first possibility is that new data may become 
available that did not exist prior to deployment or was not 
accessible prior to deployment. The second possibility is that a 
change in the mission requirements or the mission execution 
(e.g., the soldiers having to deviate from the pre-planned path) 
requires new data to be sent to the nodes. 

The first scenario involves a Non-combatant Evacuation 
Operation (NEO), where forces are sent into an area to secure 
an objective and evacuate identified personnel from an 
unstable or otherwise threatened area. A recent example of a 
NEO was Lebanon during 2006, when personnel were 
evacuated from Lebanon to Cyprus. One important 
characteristic of such scenarios is that the duration of the 
operation is typically short – on the order of hours instead of 
days. Shorter duration missions provide the possibility that 
prior to deployment of a force, the systems being carried by 
the soldiers can be preloaded with information relevant to the 
mission. Once the force is deployed in theatre, the system will 
need to automatically retrieve information that is relevant to 
the force and to each member of the force. For example, any 
information gathered from ground (or other) sensors that are 
along the path being traversed would be of interest. Any new 
information available about enemy or friendly activity or 
forces will need to be made available as well. Such 
information may originate from the operations center or from 
other teams or missions that are overlapping in space and or 
time. While the scope for the number of changes or deviations 
from the planned mission may be small, it is still important to 
push new relevant information to the force post deployment. 

The second scenario involves a typical Ship to Objective 
Maneuver (STOM) that may last for several days. As in the 
NEO case, nodes can be pre-loaded with mission-relevant 
information while the force is on the ship. However, given the 
long duration of such missions, it is much more likely that 
there are changes to the mission and orders, and consequent 
adjustments to planned activities. In such cases, new map, 
reconnaissance, and other relevant information will need to be 
retrieved by the nodes. New information may also become 
available post deployment, either back at the operations center 
or from some other unit in theatre. If so, this information 
needs to be pushed to the nodes. Also, given the longer 
duration of these missions, the deployed force may have more 

autonomy in the planning and strategy for the execution of the 
mission, which will require a flexible information retrieval 
mechanism. 

IV. DISSERVICEPRO ARCHITECTURE 
DisServicePro extends DisService with proactive 

capabilities and it is integrated in the Agile Computing 
middleware [2]. The Agile Computing middleware is a set of 
components designed to support communications and 
computation in tactical edge networks. DisService is the 
component dedicated to information dissemination. DisService 
opportunistically exploits available storage and 
communications to increase information availability in the 
network and to achieve disruption tolerant behavior. 

As shown in Figure 1, DisServicePro architecture is built 
upon DisService and utilizes its services. The Information 
Store is the structure on each node that maintains any 
information that is retrieved by the node or pushed to the node. 
After being used by the application, information may be 
retained by the Information Store for future use by other nodes. 
It may also temporarily store information that it is transferring 
from one node to another, acting as a courier, even if the local 
user may not need the information. DisServicePro exchanges 
data when its content is considered suitable in the operative 
contexts. In particular, two modules are defined: Local Node 
Context and the Peer Node Context. The Local Node Context 
contains information relevant to the local user and his or her 
mission. The Peer Node Context contains the same information 
as the Local Node Context, but for remote peer nodes. The 
context of peer nodes is useful to proactively push/pull 
information to/from other nodes preemptively. In particular, the 
Information Push component manages the proactive push of 
information to other nodes using the peer node contexts and the 
metadata associated with the information. 

 
Figure 1: DisServicePro Architecure 

On the other hand, the Information Pull component handles the 
proactive pull of information previously made available on the 
network. In addition, the Context Manager exchanges the local 
node context with peers and stores contexts received by other 

563



nodes encountered during the mission. All the information 
exchanged by DisServicePro is dynamically prioritized by the 
Scheduler based on the user's context and preferences. The 
Scheduler handles a queue of outgoing data ordered by priority. 
The Expiration Controller manages the deletion of information 
stored in the local cache. Information is usually deleted when 
expired but other policies are possible. The Replication 
Controller uses the proactive pushing and pulling mechanisms 
to disseminate information; moreover, it permits the exchange 
of node context updates using special control messages. 
Finally, the Forwarding Controller defines policies to handle 
retransmission of data in cases in which the node acts as a 
courier for other nodes. Applications on the same node can 
communicate with the same instance of DisServicePro through 
the Proxy Server component. Applications written in C++, C#, 
and Java are supported. 

V. DISSERVICEPRO CAPABILITIES 
This section describes the important features of 

DisServicePro, which combine together to provide proactive 
information dissemination. 

A. Adaptable Information Model based on the Specific 
Mission Context 

In order to understand the users’ interests and correctly 
anticipate their needs, DisServicePro collects information about 
both the information being exchanged in the network and the 
users’ behavior. Modeling such information in an accurate, 
precise way is a key requirement for obtaining good 
performance: the better this model fits the characteristics of 
users and information, the more effective the predictions made 
by DisServicePro. On the other hand, operations in particular 
areas could potentially establish new types of information and 
user characteristics. For this reason, the DisServicePro 
information model is flexible and allows applications to 
customize and adapt it to their specific needs. The information 
model managed by DisServicePro is composed of two different 
parts: the metadata, a header attached to each discrete piece of 
information traveling in the network, and the node context 
which describes the user's tasks and mission. The metadata 
contains information about the content and the purpose of the 
information being sent. The default metadata has a few fixed 
attributes that model general characteristics shared by all 
information types. These attributes are: Message ID, Receiver 
Timestamp, Source Timestamp, Source ID, Expiration 
Timestamp, Relevant Missions, Area of Interest, Location, 
Pedigree, and Importance. Depending on the mission, these 
attributes can be extended with other relevant information. For 
instance, in all the tests presented in this paper, we have 
customized the metadata by adding these attributes: Data 
Content, Data Format, Classification, Description, and Source 
Type.  Furthermore, the application can indicate which of the 
attributes should be utilized by the learning algorithm to infer 
the user's interests and which should not, providing a fine-
tuning mechanism for the information model.  On the other 
side, the node context models the characteristics of the users 
generally utilized in STOM and NEO operations. The attributes 
currently utilized in the node context are: Node ID, Mission, 
Team, Role, Useful Distance, Paths, Current Location, and 
Preferences. The Preferences attribute represents the node's 

interests that are automatically learned and Paths is a list of the 
node’s possible projected paths. A typical path is a sequence of 
points on a map, called way-points, which can be GPS 
coordinates or can be calculated with azimuths and distances. 
Each point could be named or described with notes. Points may 
also have associated a date and time in order to better 
coordinate the movements of different units on the field. This 
information is particularly useful to predict the expected time 
to use of information, but is not always present. 

B. Replication and Forwarding Mechanisms 
As illustrated in Figure 1, DisService offers the possibility 

of customizing the behavior of its expiration, forwarding, and 
replication mechanisms by implementing appropriate 
controllers. DisServicePro extends DisService and implements 
its own version of these controllers. The Replication Controller 
has the objective of increasing the availability of the 
information in the network. Replication takes place any time 
the node encounters a new peer and any time new information 
is available at the node. Replication of data is performed using 
a combination of pull and push approaches. In particular, 
concepts of path and team are exploited, permitting the 
Replication Controller to find the right redundancy balance 
inside the team and among peers sharing the same path. The 
Forwarding Controller has the objective of improving the 
timely dissemination of the information in the network. 
Forwarding takes place any time new data is received. It 
employs policies that take into account both the push and pull 
algorithms, prioritization, as well as information about the 
network topology provided by DisService to decide whether to 
forward a data to a certain node. 

C. Information Anticipation 
The ultimate goal of DisServicePro is to minimize 

information access latency for users in tactical edge networks. 
The approach taken by DisServicePro is to anticipate 
information requests and pre-stage the information ahead of 
time, minimizing the impact of degraded or lost connectivity to 
the node. Anticipating relevant information is a challenging 
task, particularly in the case of distributed and heterogeneous 
systems. The relevant information is selected by ranking its 
metadata against a set of policies that were specifically 
designed to fit typical military mission requirements. Each 
policy ranks a specific aspect of the metadata and gives a 
measure of how much the information fits the policy 
requirements. The ranks generated by the single policies are 
then combined to obtain the information priority, as detailed in 
section V.G. The policies currently implemented in 
DisServicePro are the following: 

Distance path-metadata: this policy ranks the metadata 
based on the distance between the geographical area of 
relevance of the information and the user’s projected 
path. 

Expected time-to-use: this policy tries to infer when the user 
will need the information in the future. The prediction 
is based on the timestamps that mark the way-points of 
the projected path. The policy computes the expected 
time to use of the information based on the timestamp 
of the waypoint closest to the area of interest of the 
informaion. Unfortunately, the timestamps are not 
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always available. In this case, DisServicePro is able to 
calculate the missing timestamps using distances 
between consecutive waypoints and ranks the 
information accordingly. 

Expiration time: each piece of information has an 
associated expiration time that indicates for how long 
the information is expected to be useful. This policy 
assumes that newer data has higher utility than older 
data close to its expiration time, so newer data gets a 
higher rank. The policy calculates the percentage of 
remaining time with respect to the total expiration time 
duration. In this way, information with different 
expiration time durations can be compared. 

Importance: applications that generate information can 
specify an explicit importance value for each data. A 
policy takes into account this value. 

Although the sole use of these policies provides a 
rudimentary form of predictive capabilities, this may not be 
enough to produce acceptable performance in a dynamic 
environment. For this reason, DisServicePro exploits machine 
learning techniques that analyze the usage history of the local 
information in order to find patterns from which it extrapolates 
rules that match the user’s interests. The machine learning 
problem is formulated as follow: each piece of information 
stored on the node has an associated usage value which 
indicates if the information has been utilized by the user or not. 
Given the usage history, the goal of machine learning is to 
minimize the error in predicting if new information will be 
utilized by the user or not. However, in tactical environments, 
maximizing the prediction accuracy is not the only 
performance metric and the learning algorithm must ensure 
other important characteristics. First, it must guarantee low 
resource consumption in terms of computation and storage in 
order to adapt to resource-constrained nodes such as small 
portable devices (PDAs). Another fundamental requirement is 
the capability to learn incrementally and to produce accurate 
predictions online and in real-time. Since there may be changes 
in the mission and orders, and consequent adjustments in 
planned activities and information requirements, the learning 
algorithm needs to follow the evolution of the user preferences 
during time and adapt quickly to these changes. Moreover, we 
assume that in most of the cases, training data will not be 
available prior to the mission. Finally, the learned interests 
model has to be compact and understandable in order to be 
easily shared with other peers improving the overall knowledge 
of the system. Given metadata as input, the goal of the machine 
learning algorithm is to classify the information in two 
categories: useful and not useful. The algorithm should also 
provide a score value indicating its confidence in the 
prediction. One of the best known machine learning algorithms 
to address this type of problem are decision trees. In particular, 
we found the C4.5 algorithm [8] to be well suited for our 
requirements. Two alternative algorithms have been 
implemented: Cycle Algorithm and Window Algorithm. Both of 
them are based on the C4.5 algorithm and have been designed 
to fit all the requirements listed above. The Window Algorithm 
is based on the sliding window principle. Training data is 
collected over time as entries are inserted in the training 
window one at a time. Once the data becomes too old, it is 

discarded, leaving space for newer data in the FIFO queue. 
This simple principle allows the algorithm to forget old data 
and learn from new data, following the evolution of the user’s 
interests over time. Discarding old data also decreases the 
storage requirement. However, while building a decision tree, 
the size of the training dataset influences the prediction 
accuracy. Classical data mining approaches use very large 
datasets and do not suffer for small changes in the dataset size. 
But in DisServicePro, the training window is constrained in 
order to save resources. As a consequence, changes in the 
window size may have an impact on the performance. The 
ambitious goal of the Cycle Algorithm is to reduce the window 
size without losing prediction accuracy. We observed that not 
all the new data collected during a given time adds additional 
information to the decision tree. The idea behind the Cycle 
Algorithm is to test the current decision tree on the new data for 
each iteration and discard correctly classified data. On the other 
hand, the misclassified data is added to the training window 
providing a feedback that helps the decision tree to correct past 
errors. 

Both the algorithms output their confidence value for each 
prediction. These values are used to rank the metadata, which is 
then combined with the ranks generated by the other policies. 

D. Sharing the Learned Interests with Other Peers 
In order to improve their predictive capabilities, the peers 

share both their local node context and the knowledge 
acquired by the learning algorithm. Sending the history of 
previously requested information that represents the user's 
interest would be too expensive, hence only the rule sets 
generated by the learning algorithm are exchanged. Since 
maintaining the continuously updated learned interests is 
crucial for the overall system performance, DisServicePro 
implements a custom knowledge exchange protocol that has 
been designed to be mainly event-driven. The protocol also 
exploits periodic updates to improve reliability. In order to 
save bandwidth, DisServicePro exchanges mostly small 
update messages that contain a portion of the node’s interests. 
The user's interests are split into three sections, each of them 
identified by a version number. When one or more sections 
change locally at the user node, the relative updates are 
immediately propagated in the network. For example, the most 
common and frequent update is the user's GPS position. 
Therefore, small messages containing the current versions and 
the node GPS position are periodically broadcasted. This 
policy improves reliability because if an update message gets 
lost, the peers can request it again once they receive the 
periodic message. Moreover, some nodes, for instance ground 
sensors, do not follow a path, but they stay fixed on the 
ground. For these nodes, sending periodic messages is 
convenient to make the other peers aware of their existence, 
since they generally do not change their interests over time. 
The whole node context needs to be exchanged only when two 
nodes interact for the first time. The next time they come into 
contact, the peers first exchange the latest version numbers of 
each section that has previously received from the other node 
and then, if necessary, exchange any update sections. 

The proactive pull, the proactive push, and the users’ 
interest exchange protocols are completely independent of 
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each other. Thanks to this design, it is not necessary to update 
the interests while pulling or pushing the data, saving time and 
bandwidth in both cases. 

E. Proactive Pushing of Information 
In tactical wireless environments, nodes experience 

frequent disconnections and changes in network topology. In 
such situations, nodes do not have a clear and updated 
understanding of neither the information needs nor the 
information content of other nodes. For this reason, information 
anticipation happens in a distributed manner. Each peer takes 
advantage of DisServicePro predictive capabilities to infer its 
own information needs and pull the data ahead of time. At the 
same time, thanks to the distribution of the node contexts and 
the learned interests in the network, the nodes are able to 
anticipate the other peers’ needs and proactively push useful 
information to them. Each peer actively seeks both the 
information locally generated and the data collected from other 
nodes to automatically infer when the information should be 
replicated or forwarded to other nodes based on their interests. 
The decision to proactively push or not to push information to a 
target node is based mainly on the target node’s learned 
interests, but also the interests of nodes with similar 
characteristics (for instance, nodes with the same role or nodes 
coming from areas close to the target node’s projected path) are 
taken into account. The proactive push takes place also when 
some nodes receive updated interest information from a peer. 
For instance, a possible scenario is when, due to a change in the 
mission, a node switches from its main projected path to an 
alternative path. In this case, the peer node has partially 
changed its node context meaning that now it is probably 
interested in different types of information. 

The proactive push mechanism is completely event-driven 
and it has been designed to react immediately to any change in 
the environment. It also ensures the minimum delay in 
obtaining the needed information because each node replicates 
and forwards its data as soon as it becomes available without 
wasting time. These characteristics make the proactive push 
particularly fast and allow nodes to take advantage of resource-
rich peers, even for very short periods of time. 

F. Proactive Pulling of Information 
Information anticipation happens also at the end-user 

nodes. Each node anticipates information the user may need 
based on the learned interests and proactively pulls the 
information ahead of time. The proactive pull is particularly 
appropriate to disseminate large or otherwise problematic 
information. This information is made available to other peers 
by disseminating its associated metadata, while the 
information itself remains on the source node.  Each node that 
receives the metadata may decide whether to pull the data 
ahead of time or not. The decision is based on both the user 
node interests and also similar nodes' interests as in the push 
approach. If the user node decides to proactively pull the data, 
it sends a direct request to the source node, which answers 
with the desired information. 

The proactive pull has an event-driven design, allowing it 
to immediately react not only to new metadata disseminated in 
the network, but also to any change in the user node’s 
interests. When a drift in the user's interests is detected, 

DisServicePro searches the local cache and analyzes the 
metadata recently received to check whether the associated 
information has now become of interest to the user. 

In DisServicePro, the push and pull mechanisms 
disseminate different types of information. As a consequence, 
they are independent of each other and they can apply 
customized policies for large and small data. For instance, in 
scenarios where the available bandwidth is highly constrained 
it may happen that there is not enough time to send all the 
interesting information. In such scenarios, the proactive pull 
may decide to focus on high priority information and to not 
send information with lower priority in order to save 
bandwidth, while the proactive push, in the same scenario, 
may decide to wait and try to send the low priority information 
after a while. 

The pull component also handles specific search requests 
provided by the user. Users can express search queries over 
the metadata content, which are evaluated both locally and 
across the other nodes in the network. 

G. Dynamic Information Prioritization and Scheduling 
As described earlier, tactical networks are constrained in 

terms of connectivity, bandwidth, and latency. This implies that 
there may not be sufficient bandwidth to push or pull all the 
information that DisServicePro predicts as useful for the target 
nodes. DisServicePro addresses this challenge by dynamically 
prioritizing all the information being sent both to a user as well 
as across users. The prioritization takes into account the results 
given by all the policies and the decision tree predictions 
described in section V.C. These results are not binary values, 
but continuous values effectively ranking information based on 
the different aspects evaluated. These ranks are combined 
together through a weighted sum to obtain the priority value. 
The prioritization is dynamic, meaning that the information 
priority is determined every time the push or pull mechanism 
decides to send it. As a consequence, the same information 
might assume different priorities depending on which node is 
the target, and the current situation under which the data is 
sent. For instance, when information becomes available on a 
node, DisServicePro may decide to push it to three different 
targets if it predicts that the information is interesting for all the 
three nodes. As a consequence, it calculates three different 
priorities for the same information, one for each target node. If 
the information is more important or urgent for a certain node, 
this node has assigned the highest priority and it is served first. 
Another example is when a new peer connects to the network. 
In this case, DisServicePro may decide to push to that node 
more than one piece of information. Each piece is then 
prioritized and the one with the highest priority is sent first. As 
these examples illustrate, it can often happen that more than 
one piece of information needs to be sent at the same time. This 
data is handled by the DisServicePro scheduler, which orders 
the information to be sent by priority, and arranges it in an 
output queue. In the current implementation the policies 
utilized by DisServicePro are fixed. The prioritization process 
could be further improved by using policies dynamically 
generated at runtime. For instance, a policy may decide that 
soldiers being part of the same team have higher priority than 
soldiers of other teams, or that soldiers who are in contact with 
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and currently engaging the enemy have higher priority. The 
runtime policies may specify the relative weights of these 
conditions thereby ensuring fine-grained control. 

VI. DISSERVICEPRO PERFORMANCE EVALUATION 
This section presents some initial performance results of 

DisServicePro. Two sets of experiments were performed. The 
first set evaluated the performance of the pre-staging 
algorithm, without taking into account any learning. The 
second set evaluated the learning aspects of DisServicePro. 

A. Pre-Staging Evaluation 
The purpose of the pre-staging evaluation is to quantify the 

benefit, in terms of access time, of the proactive approach over 
a purely on-demand approach. The test simulated a simplified 
NEO mission with two nodes: a source node and a target node. 
The source node represents a COC (Command Operations 
Center); it stays in a fixed location and is pre-loaded with 
information items, each being approximately 10 KB in size. 
The target node represents a team in the mission situation: it 
moves along a path and periodically requests new information 
about the area surrounding its current location. The path is 
modeled as a sequence of 20 way-points; every 30 seconds, the 
target node reaches a subsequent way-point, updates 
DisServicePro with the coordinates of the current position, and 
sends out a request for all the information of interest within an 
800m radius of the current position. Note that the timeline was 
accelerated only to speedup execution time. Upon receiving the 
request from the target node, the source node replies with all 
the information that matches the request that have not been 
already sent. The average delivery-time to retrieve an object 
that matches a request, the number of objects retrieved over the 
duration of the mission, and the percentage of hits and misses 
are measured. To expedite testing, the interval of time between 
the 20 way-points (30 seconds) and the items of information 
requested at each way point (approximately 12) were 
proportionally reduced by a factor of 10. The size (10 KB) was 
chosen for the information because this size is representative of 
the average data size typically transmitted in a tactical network 
environment. In order to simulate a realistic environment and 
not to unfairly stack the pre-staging test, a path with partially 
overlapping areas is used. In this way, even without pre-
staging, it is possible for the target nodes to find information of 
interest for the current area that are locally cached due to a 
previous retrieval. The following bandwidth settings were used 
with both pre-staging and non-pre-staging approaches: 56 
Kbps, 256 Kbps, and 512 Kbps. The 56 Kbps link is 
representative of the typical bandwidth for a portable 
SATCOM link, whereas 256 Kbps is the typical bandwidth for 
a UAV link and 512 Kbps is the typical bandwidth for high-
capacity SATCOM link. The metadata was generated 
randomly. The list the possible values that the attributes can 
assume are as follows: 

Source:   node_A, node_B. 
Expiration_Time:  300000, 400000. 
Relevant_Missions:  mission_X, mission_Y. 
Left_Upper_Latitude:  continuous values within the area. 
Left_Upper_Longitude:  same as above. 
Right_Lower_Latitude:  same as above. 
Right_Lower_Longitude:  same as above. 

Location:   area_A, area_B, area_C, area_D, 
   area_E.  
Data_Content:    Map, Sensor_Data, Squad_Report, 
   COC_Report, UAV_Image. 
Data_Format:   JPG, MPG, XML, TXT. 
Classification:    Unclassified, FOUO, ITAR, Secret, 
   Top_Secret. 
Description:    message_type1, message_type2. 
Node_Type:    Video_Sensor, Acustic_Sensor, 
   Sismic_Sensor, UAV, COC, 
   Marine_Squad. 
Importance:    1, 2, 3, 4, 5. 

The receiver is interested only in the subset that matches the 
following ruleset: 
NodeType ε {COC, Marine_Squad, UAV} AND 
Data_Content ε {Squad_Report, COC_Report, UAV_Picture} AND 
Classification ε {FOUO, ITAR, Unclassified, Secret}  

OR 

NodeType ε {Video_Sensor, Acustic_Sensor, Sismic_Sensor} AND 
Data_Content ε {Sensor_Data} AND 
Data_Format ε {MPG, JPG, XML}  

OR 

NodeType ε {COC, UAV} AND 
Data_Content ε {Map, UAV_Picture, Sensor_Data} 

To summarize, the test parameters were as follows: 

Path:     composed of 20 way points 
Request Interval:   30 seconds 
Radius:    800m 
Payload Size:    10KB 
Number of Messages: 1000 (for the 512 Kbps and 256  
    Kbps cases) 100 (fro the 56 Kbps  
    case) 
Link Connectivity:  56 Kbps, 256 Kbps, 512 Kbps 

The results shown below indicate a significant 
improvement in the information retrieval latency. In addition to 
the average latency, we measured the number of hits, the 
number of misses, and the number of false positives. False 
positives occur when DisServicePro incorrectly predicts and 
pushes information that is never requested by the end user 
node. In the first set of results, without pre-staging, there are no 
false positives. Also, there are some hits even without pre-
staging because the end user node may request an item that it 
has already requested in the past. The results show that with 
pre-staging, the average latency is improved by a factor of 
6.28, 4.12, and 6.75 times respectively, for the three different 
links of 56 Kbps, 256 Kbps, and 512 Kbps. 

Table 1: Resuts Without Pre-Staging 

Link 
Bandwidth 

Average 
Latency 
(msec) 

STD 
deviation 

#hits #Misses #False 
Positives 

56 Kbps 8726 16857 15 25 0 

256 Kbps 11344 17914 57 123 0 

512 Kbps 10131 17421 57 123 0 
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Table2: Results With Pre-Staging 

Link 
Bandwidth 

Average 
Latency 
(msec) 

STD 
deviation 

#Hits #Misses #False 
Positives 

56 Kbps 1389 4666 36 6 26 

256 Kbps 2749 8296 307 43 218 

512 Kbps 1502 5360 332 30 218 

Note that with pre-staging, there are also many more 
requests overall, given that no time is spent retrieving 
information when there is a hit. 

B. Learning Evaluation 
In the learning evaluation the two iterative algorithms have 

been compared against each other and against other algorithms. 
All the algorithms were tested on the Adult dataset obtained 
from the UCI Repository of Machine Learning databases [12]. 
This dataset is a collection of census information of people 
from different nations, such as sex, marital status, age, 
occupation etc. The task consists of classifying the set in 
people whose annual income is higher of 50000$ or lower. 

Algorithm Error Rate 

Cycle Algorithm 13.98% 

Window Algorithm 14.18% 

C4.5 Original 15.54% 

C4.5 Rules 14.94% 

Voted ID3 (0.6) 15.64% 

Voted ID3 (0.8) 16.47% 

NBTree 14.10% 

FSS Naïve Bayes 14.05% 

IDMT (Decision Table) 14.46% 

Naïve-Bayes 16.12% 

Nearest-Neighbor (1) 21.42% 

Nearest-Neighbor (3) 20.35% 
The results obtained with Cycle Algorithm and Window 

Algorithm refer to the algorithms run with the settings as 
follow: for the C45 Cycle Algorithm: 

initial window:  200 items 
maximum window:  1200 items 
increment:   200 items 
maximum errors:  20% of increment 
initial cycle window:  100% of actual window 

For the C45 Window Algorithm: 

initial window: 200 items 
maximum window:  270 items 
increment:   70 items 

These results, while promising, are preliminary and have 
not yet been integrated into the overall DisServicePro 
application. 

The results of error rate for the other algorithms are 
publicly available on the UCI Repository website. 

VII. CONCLUSIONS AND FUTURE WORK 
This paper presented DisServicePro, a proactive peer-to-peer 
dissemination service for tactical network environments that 
supports information on-demand. The architecture, 
motivational scenarios and initial experimental results are 
presented. The experimental results show the benefits of the 
proactive approach, in terms of average delivery time and the 
potential of the implemented learning algorithms. Future work 
will attempt to exploit the network characteristics to efficiently 
disseminate information in large MANETs. Topology state 
information and bandwidth prediction algorithms are going to 
be integrated in the system to address the current scalability 
issues. Moreover, DisServicePro approach is currently being 
compared to other recently proposed algorithms, including 
content-based and sequence-based pre-fetch prediction 
algorithms, to determine which maximizes the tradeoff 
between cache hit rate and bandwidth utilization. 
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