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Abstract—Managing the extremely large volume of 

information generated by Internet-of-Things (IoT) devices, 
estimated to be in excess of 400 ZB per year by 2018, is going to 
be an increasingly relevant issue. Most of the approaches to IoT 
information management proposed so far, based on the collection 
of IoT-generated raw data for storage and processing in the 
Cloud, place a significant burden on both communications and 
computational resources, and introduce significant latency. IoT 
applications would instead benefit from new paradigms to enable 
definition and deployment of dynamic IoT services and facilitate 
their use of computational resources at the edge of the network 
for data analysis purposes, and from smart dissemination 
solutions to deliver the processed information to consumers. This 
paper presents SPF (as in “Sieve, Process, and Forward”), an 
SDN solution which extends the reference ONF architecture 
replacing the Data Plane with an Information Processing and 
Dissemination Plane. By leveraging programmable information 
processors deployed at the Internet/IoT edge and disruption 
tolerant information dissemination solutions, SPF allows to 
define and manage IoT applications and services and represents 
a promising architecture for future urban computing 
applications. 

Keywords—Internet of Things; Software Defined Networking; 
Information Dissemination; Value of Information. 

I. INTRODUCTION 
A recent white paper from Cisco Systems Inc. predicts that 

by 2018 Internet-of-Things (IoT) devices will generate more 
than 400 ZB of data per year [1]. Consequently, a multitude of 
IoT applications are expected to be deployed, each designed to 
process data from IoT and mobile devices in urban 
environments. However, IoT applications, especially those 
designed to operate in complex urban computing environments 
[2], require sophisticated computational and networking 
architectures, so their realization presents significant 
challenges. 

From a system design perspective, handling the large 
volume of information generated by IoT devices is going to be 
an increasingly relevant issue. In fact, next-generation 
applications will primarily run on mobile devices that operate 
in a challenging, heterogeneous, and dynamic wireless 
networking environment. They will, however, be required to 
provide enough storage and computational power for the 

processing of information as well as to create and manage 
communication paths from information producers to 
information processors and finally to information consumers, 
while at the same time orchestrating the various application 
entities involved. 

However, many approaches realized so far, based on the 
collection of IoT-generated data for storage and processing in 
the Cloud, present several drawbacks. First, the cost of storage 
can be very high and the latency in information delivery can be 
substantial [3]. Second, the load on the network can be 
excessively high. Finally, these approaches mostly consider 
large one-time processing of large volumes of data, which is 
not scalable. Rather than attempt to store and process all data 
available in an IoT ecosystem, more practical approaches will 
likely rely on selective filtering to aid in data storage and 
dissemination. 

The dissemination of processed information also presents 
some challenging issues. In the urban computing environment, 
characterized by heterogeneous and dynamic wireless 
networking, the stakeholders using and managing IoT 
applications cannot assume to be in control of the networking 
infrastructure or even leverage TCP flows for efficient 
information dissemination. Instead, applications need specific 
middleware support to automatically take advantage of 
communication optimization opportunities such as those 
offered by Device-to-Device (D2D) communications and 
mobile offloading techniques (i.e., switching from 4G/LTE to 
WiFi communications in case an open hotspot is detected) [6]. 

We believe that these challenges could be effectively 
addressed by adopting an SDN approach that considers 
information processing and dissemination functions at the same 
time, which represent two fundamentally interrelated aspects of 
IoT applications. This could be achieved by extending the 
reference SDN architecture proposed by the Open Networking 
Foundation, replacing the Data Plane with an Information 
Processing and Dissemination Plane. 

This paper presents SPF (Sieve, Process, and Forward), an 
SDN solution that aims to address the explosion of IoT data by 
processing it at the edge of the network, in close proximity to 
the source of its generation. In order to filter information 
objects, SPF uses a minimum content difference threshold for 



new IoT data to be considered for processing and 
dissemination. In addition, SPF prioritizes dissemination of 
critical information by ranking objects according to their 
corresponding Value of Information (VoI) metric [5]. 

SPF is a middleware level solution that does not require 
any control of the network infrastructure (e.g., 4G/LTE 
networks) in order to be deployed. SFP relies on robust and 
disruption-tolerant information dissemination solutions that can 
naturally take advantage of the opportunities presented by 
heterogeneous networks and D2D communications.  This 
approach enables easy development, deployment, and 
management of IoT applications in urban computing 
environments. 

II. IOT APPLICATIONS IN URBAN COMPUTING ENVIRONMENTS 
In the near future, IoT applications will put a huge burden 

on network and computational resources. As many new 
applications emerge, system designers will have to deal with 
designing solutions capable of processing very large volumes 
of data in a timely fashion. 

Transmitting all raw IoT data to the Cloud for processing 
requires a lot of bandwidth and computational resources,  
introduces significant latency in the data analysis processes and 
on the delivery of processed information, and places a 
considerable strain on communication infrastructures.  

This is especially true for the cellular network 
infrastructure. Despite D2D communications representing an 
interesting opportunity to mitigate the risks of encountering 
performance bottlenecks at the evolved NodeB (eNB) base 
stations [7] [8], the projected large volume of generated data 
will still put a significant burden on the network. This situation 
is further exacerbated by the increasing sophistication of 
mobile devices, which opens the door for even more data 
collection and processing applications. In particular, networks 
will have to accommodate larger quantities of data as they pave 
the way to mobile crowdsensing [9] and even anticipatory 
mobile computing [10] scenarios. 

A promising alternative involves pushing computational 
resources towards the edge of the network, thus enabling low-
level data processing via available devices such as event 
detection and data aggregation. This “fog computing” 
approach is a vision that extends the long-time proposed 
mobile and/or on-demand Cloud deployment [11] and is 
similar to the notion of Agile Computing [6]. By keeping the 
processing effort at the edge of the network and favoring peer-
to-peer communications, using D2D or WiFi ad-hoc, we avoid 
conveying huge volumes of IoT data on the cellular 
infrastructure and to the Cloud, which would negatively 
impact the network infrastructure. 

However, the quick evolution of hardware enables even 
more agile, ad hoc solutions than current Cloud based 
Infrastructure- or Platform-as-a-Service approaches. Modern 
hardware solutions based on neuromorphic processors (such as 
IBM’s True North Chip1), hybrid CPU/manycore (such as 
Adapteva’s Parallela board2) or CPU/FPGA architectures (such 

                                                             
1  http://www.research.ibm.com/articles/brain-chip.shtml 
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as Xilinx’s Zynq-7000 SoC3), or ultra-cheap CPUs (such as the 
new Raspberry Pi Zero) will enable the deployment of energy 
efficient computing platforms capable of “Cloud-like” data 
aggregation and processing at the network’s outer edges. 
Leveraging those resources will require more dynamic 
approaches. 

Finally, the adoption of the “Big-Data” approach in IoT-
based ecosystems, based on the analysis of each single portion 
of raw data available, may be susceptible to the “diamonds in 
the raw data” fallacy [4]. According to this fallacy, with 
increasingly large volumes of IoT data, proportional amounts 
of valuable information will emerge. We argue that this 
assumption might not always hold, and consequently that a 
significant portion of future IoT applications could be better 
served by a much more efficient approach based on the 
accurate analysis of a small and targeted portion of IoT data. 

To better illustrate the challenging requirements of IoT 
applications, their increasing relevance, and their need for new 
communications and computational paradigms, we introduce a 
possible near future scenario in which IoT applications are 
used to support participants and workers at a large Street Music 
Festival. The Street Music Festival is an event involving a 
relatively large number of street artists performing in an urban 
environment, attracting a significant number of people. 

Customers attending the festival (henceforth termed 
participants) will be interested in information about 
performances as well as vending options for both refreshments 
and merchandise. Likewise, vendors will want to track general 
participant activity to plan their sales activities. For instance, a 
food vendor may want to time their cooking activities with the 
conclusion of a nearby performance. 

In order to preserve safety and security of participants, the 
event will be worked by a team of Emergency Medical 
Services (EMS) personnel and by a police force. EMS 
personnel will want to track the number of people gathering in 
each area for both resource allocation, e.g., deployment of 
water, cooling centers, and staff, and management of 
emergency requests. Likewise, the police force will be 
interested in tracking the occurrence of criminal incidents, such 
as drunk and disorderly felonies. Additionally, police will be 
interested in indicators of potential incidents, such as large 
vehicles fitting specific profiles that could be used for 
malicious purposes. 

In this scenario, the development and deployment of IoT 
applications requires the installation and management of 
communications and computational resources through a highly 
multidisciplinary effort, approaches inspired by Software 
Defined Networking (SDN) represent a very promising 
research direction. 

III.  SPF DESIGN OVERVIEW 
To address the issues discussed in Section II, we propose 

SPF (Sieve, Process, and Forward), an SDN-inspired solution 
that enables IoT data filtering (“sieve” phase), information 
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extraction (“process” phase), and dissemination (“forward” 
phase). 

In SPF, an IoT application is simply a collection of related 
services with the same priority and the same target users. A 
service is a function implemented through the processing of 
IoT data and dissemination of the resultant information that 
users can activate on-demand. Examples of services include 
audio/video analysis, as well as object tracking and counting. 

The SPF Controller allows service providers (or managers) 
to define IoT applications that provide a set of services. SPF 
enables the definition of several concurrent applications, each 
with different services and priority levels. In addition, the SPF 
Controller receives user service requests and deploys services 
accordingly. This enables the installation of services that 
require resources for data analysis and information 
dissemination only when they are needed. 

We envision 3 roles for the stakeholders in the SPF 
architecture: administrators, service providers, and users. 
Administrators manage the SPF platform by deploying, 
running, and operating SPF controllers and Programmable IoT 
Gateways (PIGs), and making them available to service 
providers. Service providers develop IoT applications, deploy 
them, and take care of their management. Finally, users are 
people who use SPF applications through a client app on their 
smart devices. In our example, users of the SPF are 
participants, the EMS, and the police force. We can imagine 
that the management and service provider roles in this scenario 
would be played by two corresponding commercial companies.  

The SPF architecture, depicted in Fig. 1, is based on an 
extended version the Open Network Foundation’s SDN 
Architecture, with an Information Processing and 
Dissemination Plane replacing the Data Plane. The two most 
important components of SPF are a centralized SPF Controller 
and a set of PIGs deployed at the 6LoWPAN/Internet edge of 
the network. 

The Application Plane of SPF contains all the IoT 
applications developed and deployed by service providers. 
Users running client versions of IoT applications on their 

devices can send service requests to the SPF Controller, 
typically using the 4G network. The PIGs selected by the SPF 
Controller will process users’ requests and send the produced 
responses, preferring D2D information dissemination 
techniques over the use of 4G/LTE. 

The functions of the Control Plane are provided by the SPF 
Controller, which is in charge of deploying the information 
processing and dissemination functions required by 
applications. In case an application requests a different service, 
the SPF Controller reprograms the PIGs accordingly, using 
4G/LTE communications. Within the SPF Controller, the 
Application Request Dispatcher component takes care of 
receiving service requests from users, of coordinating with the 
SPF Policy Manager component to identify the most 
appropriate course of action, and of dispatching the 
corresponding instructions to the interested PIGs. 

The functions of the Information Processing and 
Dissemination plane are provided by PIGs, which leverage the 
set of filtering and communications functions implemented by 
the software platform, according to the instructions received by 
the SPF Controller. PIGs can be deployed directly on the 
gateway nodes that connect 6LoWPAN networks to the 
Internet or on dedicated hardware placed in the gateway nodes’ 
proximity. For simplicity, the rest of this paper will assume the 
usage of reasonably powerful gateway nodes, each capable of 
hosting an SPF PIG software component. 

Most PIGs will be installed in nodes with multiple 
communication links: typically Wi-Fi, 4G/LTE, and IEEE 
802.15.4, but occasionally also Bluetooth-LE and NFC. The 
4G/LTE interface is the only infrastructure-based 
communications available, allowing (relatively) reliable 
communications with, e.g., the SPF Controller for 
reconfiguration purposes. However, 4G/LTE communications 
are rather resource intensive and are not the preferred solution 
for battery-operated devices, as many PIGs will be. In fact, 
SPF enables dissemination of processed information by 
leveraging short-range device-to-device communications, 
which, albeit less reliable, represents a solution significantly 
less resource intensive and particularly well suited for urban 
computing environments with high node density and node 
mobility. 

The Management Plane provides 3 sets of APIs with 
independent goals. The Application Definition API enables 
service providers to define IoT applications and all related 
configurable parameters. The Platform Control API allows 
administrators to manage the SPF Controller by giving them 
the capability to add new PIGs, configure specific information 
policies or increase/reduce the priority of some applications, 
and so on. Finally, the Device Control API gives administrators 
the possibility to control PIGs: this API defines functions to 
reprogram the number of processing resources allocated for 
specific services, choose the network interface through which 
service responses are sent, select the type of information 
dissemination algorithm to use, and so forth. 

 
Fig. 1. The SPF Architecture 



IV. IOT APPLICATION DEFINITION 

A. Definition of IoT Applications and Services 
The SPF Controller enables managers to define IoT 

applications and the corresponding services they implement 
using a dedicated Domain Specific Language (DSL). Each 
application has several aspects that can be configured, such as: 
a name, a priority level (between 1 and 100), a set of allowed 
service types provided to the users, and a set of service 
configurations and dissemination policies. SPF enables IoT 
applications to receive specific priority levels in order to 
differentiate between critical and best-effort applications. 
Service configurations control how the application deals with 
user service requests of the corresponding type. Dissemination 
policies instead control all the configurable aspects involved in 
the information dissemination process, such as: the 
dissemination channel, the maximum transmission frequency, 
the maximum number of retransmissions, the obsolescence 
management policy for the information objects managed by the 
application, etc. 

For instance, in the street music festival scenario from 
Section II, we could have 3 different IoT applications that 
support the needs of festival participants, EMS personnel, and 
police forces respectively. 

The Participants IoT application only allows 2 types of 
service requests: “find” and “listen”. The find service allows 
users to look for a specific object, e.g., a text string, in the IoT 
data. The listen service allows users to request names for songs 
played in different parts of the festival area, by leveraging a 
song detection function like those in SoundHound4 or Shazam5. 
Each of those services also has a service configuration that 
states that the value of information decays linearly as the 
distance between user and information source and the time 
between service request and information generation increase. 
The Participants applications also has a dissemination policy 
that defines the information dissemination channel on which 
information objects will be conveyed to reach their requestors, 
and the corresponding parameters. The EMS and “Police 
applications are defined in similar ways. However, they have 
higher priorities, no restrictions on the type of services 
allowed, and more aggressive information dissemination 
policies. 

As with service types, dissemination strategies will vary 
amongst the 3 applications. A key distinction between the 
strategies lies in management of object re-transmissions. In the 
case of the participant application, only one attempt to re-
transmit a dropped object is made, after a 30 second wait. By 
contrast, the police application attempts 60 re-transmissions at 
10 second intervals. Additionally, while the Participants and 
EMS applications will overwrite old objects with newer 
versions, the Police application also retransmit copies of older 
object versions (potentially aiding in ongoing investigations). 

Another distinction between the dissemination strategies 
lies in the broadcast channel utilization. In the street music 
festival scenario, data transmission can be either over local 
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cellular networks or non-cellular WiFi networks set up on the 
festival grounds. To ensure continuous reliability of local 
cellular networks, limitations on their usage are taken into 
consideration. For instance, the Participants application is 
restricted to WiFi-only transmissions. Likewise, for message 
re-transmission the EMS application will attempt to use both 
the cellular and WiFi networks for 1 in 5 transmissions, while 
the Police application will use both for each transmission. This 
behavior can be controlled by indicating what percentage of 
transmissions (by default, 100%) SPF should perform over a 
particular channel. In general, the careful usage of the many 
communication resources available represents one of the most 
important points in an IoT service definition. 

B. User Service Requests Management 
The SPF Controller receives service requests from users 

and instantiates the corresponding services accordingly. This 
allows for dynamic behavior that triggers the execution of 
information processing and dissemination only when they are 
actually needed. Since SPF request messages are short, for 
reasons of simplicity and to avoid increasing latency 
unnecessarily by employing disruption-tolerant information 
dissemination techniques, SPF client applications exploit 4G 
links to send requests to the SPF Controller. 

Upon receipt of service requests from users, the SPF 
Controller updates the state of the service and contacts the 
PIGs to update their configuration. More specifically, the SPF 
Controller provides updated information about the number of 
requests for a given service and the location of the service user 
closest to the gateway, and changes the configuration of the 
information dissemination channels in response to a sudden 
spike (or drop) in the number of service users. 

For instance, in the Street Music Festival scenario, 
Participants are interested in finding information about where 
they can purchase water and what songs are being played in 
their proximity. Likewise, EMS personnel are interested in 
counting the number of participants on the festival grounds, in 
order to allocate their resources appropriately. Finally, the 
police force wants to count the number of large vehicles going 
towards the festival location. Once these requests reach the 
SPF Controller, they are processed and trigger corresponding 
reprogramming of the PIGs. 

V. INFORMATION PROCESSING AND DISPATCHING 
The Programmable IoT Gateway (PIG), whose architecture 

is depicted in Fig. 2, is the component of SPF in charge of 
information processing and dissemination. The PIG behavior is 
fully programmable based on the instructions received by the 
SPF Controller.  

A. Dynamic Instantiation of Information Processors 
The processing of data is performed by several information 

processors (or pipelines) that are set up by the Programmable 
Controller, according to the instructions received by the SPF 
Controller. Pipelines, depicted as a cog wheel and funnel 
sequence in Fig. 2, have the purpose of analyzing raw data to 
obtain higher-level information, e.g., functions to implement 
object tracking, object counting, optical character recognition 
(OCR), and speech-to-text. 



For each message m containing raw data received from the 
6LoWPAN, the Information Processor checks which set of 
services 𝑅!  are relevant and tags the message accordingly. 
Then, the Information Processor detects which set of pipelines 
𝑅! are relevant for message m, creates 𝑅! − 1 duplicates of m, 
and forwards the messages to the pipelines. For instance, a 
message containing a video frame would be relevant to the 
Find Water service for the Participants application, to the 
Count People service of the EMS application, and to the Track 
Vehicles service of the Police application. As those services 
respectively require OCR processing, object counting, and 
object tracking, copies of the video frame message would be 
forwarded to the three corresponding pipelines. Note that, in 
order to minimize the number of information processing tasks, 
a pipeline performing a specific processing task can be shared 
between different services. 

To minimize the number of information processing tasks, 
SPF optionally allows implementation of content-wise filtering 
of the data that is considered for processing, also referred to as 
the Sieve phase. To this end, each pipeline keeps a memory of 
configurable size (defaulting to 5 messages) that stores the raw 
data messages recently processed. Before the actual processing, 
each message is compared with the messages stored in the 
pipeline memory. Here, 𝜎 is defined as the difference between 
the information contained in the new message and the ones 
stored in memory. If the amount of new information 𝜎 is larger 
than the pipeline’s minimum filtering threshold 𝜏!"# , the 
message is processed, and is otherwise discarded. For instance, 
a 0.05 filtering threshold value means that new data will only 
be considered for processing if it differs at least 5% from data 
stored in memory. 

The Process component of SPF is managed via a collection 
of data-processing pipelines, each instantiated for a particular 
information processing task, e.g., video processing for object 
counting, photo processing for OCR, etc. Pipelines will  
typically be implemented by software. For instance, we are 

currently implementing basic object recognition / tracking and 
OCR functions based on open source software including 

OpenCV 6  and Tesseract 7 . However, pipelines might also 
leverage existing hardware resources for information 
processing purposes, such as FPGAs, many-core CPUs, or 
neuromorphic processors. 

After the pipeline processing, the message containing raw 
data is transformed into an Information Object (IO). Then, the 
Information Processing component calculates the VoI of the IO 
for each service 𝑟 ∈ 𝑅! using formula (1). It then hands the IO 
and the corresponding VoI to the Information Dissemination 
component. 

B. Value of Information-based Prioritization 
To prioritize the dissemination of important information, 

SPF leverages concepts from Value of Information (VoI) 
research, which represents one of the most promising avenues 
for information filtering and prioritization in IoT applications. 
In fact, by associating a dynamic and recipient-specific value 
to each Information Object (IO), VoI based methodologies and 
tools represent a natural way to filter and prioritize information 
[5]. 

Multiple definitions exist in the literature for VoI, and it is 
commonly quantified as the degree of benefit a piece of 
information provides to decision makers. In [5], the authors 
define VoI as a metric specific to the needs of particular 
consumers, as opposed to intrinsic attributes of information 
termed Quality of Information (QoI). In other words, while an 
information object may have high intrinsic quality, its value to 
one consumer may be different than to others. As an example 
from the Street Music Festival scenario, consider a high-quality 
(e.g., high resolution) image of a van with tinted windows 
pulling up near a performance stage. While this image may 
have low value to participants, it could have a much higher 
value for police and security forces. Since the quality of this 
image can impact its ultimate value, [5] also considers QoI as a 
key part of establishing VoI. By exploiting VoI, SPF can 
transmit information to appropriate consumers while regulating 
resource consumption at the edge of the network. 

SPF calculates VoI according to four factors: Application 
Priority (PR), Normalized Number of Requests (RN), 
Timeliness Relevance (of Request) Decay (TRD), and Proximity 
Relevance (of Request) Decay (PRD). 

Each IoT application in SPF is assigned a priority PR. This 
is used to establish an ordering in which corresponding 
information should be sent through the network, independently 
from others VoI factors. 

We expect that the size of consumer populations will vary 
across different IoT applications. Therefore, SPF calculates the 
RN factor to normalize the VoI of each Information Object (IO) 
based on the size of their respective consumer populations. 

The SPF model decreases the VoI of IOs over time using 
the obsolescence profile modifier, which affects the value of  
TRD. SPF supports three types of VoI obsolescence profiles: 
constant, linear decay, and exponential decay. In the constant 
profile, the VoI of an IO remains constant over time (TRD 
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Fig. 2. The SPF Programmable IoT Gateway. 



always equals 1). In the linear decay profile, VoI decreases 
from a maximum value of 100% (TRD = 1) at the time of 
information generation t!, to a value of 0% (TRD = 0) at time 
t = t! +  τ!"#$%. In general, most applications will want to use 
the linear or exponential VoI profile modifiers, as the constant 
VoI profile is designed for the most critical IOs only. 

SPF also takes into consideration the geographic distance 
between a consumer and the location corresponding to an 
information object to compute VoI. In fact, distance values can 
impact potential usefulness to consumers - knowledge of a 
vendor on the opposite side of the concert grounds may not be 
useful, while knowledge of a closer vendor could be. 
Therefore, an obsolescence profile modifier similar to that used 
to compute TRD is applied to proximity, which determines the 
value of factor PRD. Again, linear and exponential VoI profile 
modifiers are expected to be relevant to most tasks, while the 
constant modifier will only apply to the most critical IOs. 

Based on the four proposed factors, SPF’s corresponding 
VoI calculation formula is defined as: 

𝑉𝑜𝐼(𝑜, 𝑟, 𝑡, 𝑎) = 𝑃!(𝑎) ∗ 𝑅!(𝑟)
∗ 𝑇!"(𝑡,𝑂!(𝑜))
∗ 𝑃!"(𝑂!(𝑟),𝑂!(𝑜)) 

 
(1) 

where o is an information object, r the recipient, t the current 
time, a the application, 𝑂! and 𝑂! are operators that retrieve, 
respectively, the time and location of origin of objects and 
recipients. 

C. Information Delivery over Dissemination Channels 
Once they are ready for dissemination, IOs are transferred 

to corresponding service dispatchers. Service dispatchers are 
the entities in charge of the information dissemination process 
for a specific service. Each service dispatcher maintains a 
transmission queue, where IOs are ordered according to their 
corresponding VoI score. IOs with higher VoI scores are 
transmitted first and those with lower VoI scores are 
transmitted later. 

Infrastructure-based communications will typically be 
available through 4G/LTE connectivity. However, in addition 
to their relatively intensive energy consumption, cellular 
communications can significantly deteriorate when used by a 
very large number of consumers. For these reasons, service 
dispatchers will typically prefer conveying IOs over a variety 
of short-range and D2D communications. In fact, the way the 
service dispatchers use these devices represents one of the most 
important policies for IoT service definition. 

For instance, for the Find Water service in the Street Music 
Festival scenario, SPF could leverage D2D communications 
(Wi-Fi, Bluetooth, or NFC) to enable the dissemination of IOs 
reporting the locations where participants could find water 
without burdening the 4G/LTE infrastructure. Infrastructure-
less communications could also enable the dissemination of 
IOs in locations that cannot be easily reached using 
infrastructure-based communications, such as subway stations. 

From the communications perspective, our approach builds 
on top of our previous research on information dissemination 
in opportunistic networking and tactical network environments. 
More specifically, SPF implements its Forward phase by 

leveraging the information dissemination functions provided 
by the DisService8 [12] [6] software package. 

DisService implements disruption-tolerant publish- 
subscribe communications by supporting multiple independent 
virtual communication channels, called subscriptions, and is 
designed to operate in highly dynamic networking 
environments. To optimize communications, DisService nodes 
use aggressive message-caching policies and keep track of 
each other’s contact history. This enables nodes to infer 
knowledge about their surrounding environment, which can be 
used to detect and leverage message ferrying nodes [13].  

SPF uses a dedicated DisService subscription for each IoT 
application. The dissemination policies for IoT services can 
also be individually tuned with several parameters, such as the 
aggressiveness in IO retransmissions and copying, and the 
aggressiveness in caching usage. 

D. Programmable controller 
The Programmable Controller is the component responsible 

for setting up the information processing pipelines, the service 
dispatchers, and the information dissemination channels 
according to the instructions received by the SPF Controller. 

The Programmable Controller listens on the 4G/LTE 
interface and waits for a program or service configuration 
update from the SPF Controller. In fact, during the execution 
of IoT applications and services, the Programmable Controller 
can (and typically will) receive additional requests for a new 
service installation or for the reconfiguration of an existing 
service, e.g., in case a much larger pool of users ends up using 
that service. In this case, the Programmable Controller will 
configure the information processing and dissemination 
pipelines according to the instructions received from the SPF 
Controller, instantiating processing components if necessary. 

The Programmable Controller is also in charge of 
managing computational resources and of activating the 
hardware and software components required for the 
information processing. For instance, for the Find Water 
service presented in the  Street Music Festival  scenario, the 
Programmable Controller is capable of understanding that the 
object of the find command is a textual string. So, it will 
instantiate an OCR software component to analyze messages 
containing pictures and extract any text they contain. Similarly, 
for an object tracking service the Programmable Controller will 
instantiate a video processing software component that will try 
to detect large vehicles coming towards the festival grounds.  

VI. IMPLEMENTATION AND FIRST EVALUATION 
We have developed a prototype implementation of SPF 

using the JRuby platform and have released it as open source 
under the MIT license. The prototype is available for download 
at: https://github.com/mtortonesi/spf. 

We have also developed an Android application that 
implements a prototype client version of the Participants 
application in the Street Music Festival scenario. Our 
application allows the user to send “find”-type requests to a 
remote SPF Controller, automatically enriched with 

                                                             
8  DisService is open source: https://github.com/ihmc/nomads 



geolocation data. Information on the device position is used for 
VoI computations and to improve the performance of particular 
information dissemination strategies. The application interfaces 
with the DisService application for Android to receive IOs sent 
by PIGs over DisService. 

We also implemented 2 image processing pipelines: Car 
Count, which counts the number of vehicles appearing in an 
image using the Haar Cascade Classifier algorithm, and OCR, 
which identifies the portions of containing text, cuts them, and 
extrapolates the text contained in them. Both pipelines are 
implemented in Java leveraging the functions provided by the 
OpenCV 3.0 library and the Tesseract and Tess4J components. 

We conducted a small experiment to assess the 
effectiveness of SPF in managing IoT information object 
throughput, using a PIG on a machine with Ubuntu Linux 
15.10 64bit, equipped with an Intel Core 2 Duo P8400 CPU at 
2.26GHz and 4GB of RAM, and running the Java 7 HotSpot 
64-Bit Server VM. Table 1 shows some preliminary results 
with respect to the average image processing time obtained for 
the Car Count and OCR pipelines, using pools of 2, 4, and 8 
threads. For the experiment, we fed each pipeline with a 
dataset of 100 and 64 images for Car Count and OCR, 
respectively, and each experiment was repeated three times for 
every possible value of the thread pool size. In addition, the 
last two columns of the table show the amount of data at the 
entry and exit points of the pipelines. A difference of three 
orders of magnitude between input and output size emerges 
from our experiments, which led us to believe that moving data 
analysis and feature extraction from the Cloud to the edge of 
the network can be incredibly effective in reducing strain on 
the network infrastructure. 

TABLE I.  AVERAGE PROCESSING TIME PER IMAGE WITH DIFFERENT 
THREAD POOL SIZES (2, 4, AND 8) FOR THE CAR COUNT AND OCR PIPELINES 

 Avg. pr. t. 
p.i. (ms) 
p.t.s. 2 

Avg. pr. t. 
p.i. (ms) 
p.t.s. 4 

Avg. pr. t. 
p.i. (ms) 
p.t.s. 8 

Input 
Size 

(MB) 

Output 
Size 
(KB) 

Car 
Count 311.05 286.34 257.41 11.3 8.2 

OCR 958.31 934.70 997.224 13.5 19.3 

VII. RELATED WORK 
A significant amount of research has focused on the 

problem of data reduction for IoT/M2M applications. 
Researchers have proposed sophisticated information theoretic 
and data centric solutions that enable the collection of a subset 
of IoT data with high entropy levels [14]. In addition, many 
studies have addressed the more specific problem of data 
reduction for time series, which are arguably the most widely 
used data structure in IoT applications [3] [15] [16] [17]. 

The Quality- and Value-of-Information concepts are 
relatively novel and have been recently proposed and 
investigated in the sensor network research area, following the 
seminal work by Howard [18] and more recent developments 
in economic and decision theories [19] [20]. More specifically, 
researchers have developed system-wide i.e., non-consumer 
specific, and time-invariant QoI- and VoI-based data reduction 
solutions leveraging multiple-criteria decision making 
techniques such as the Analytic Hierarchy Process [21] and 

Von Neumann-Morgenstern utility functions [22]. Other 
proposals devised more sophisticated schemes that consider 
time-varying properties in VoI metrics to optimize the 
scheduling of message transmissions [23] or the traveling path 
of unmanned data harvesters [24] in underwater wireless 
sensor networks. To the best of our knowledge, the 
investigation of time-varying and consumer-specific VoI 
metrics for dynamic information filtering and prioritization in 
tactical networks has only been recently investigated in [5]. 

The fog computing and mobile edge computing research 
areas also focus on the deployment and exploitation of 
computational resources at the edge of the network, in 
proximity to the data sources and to the service consumers [11] 
[25]. While they represent very promising research areas, fog 
computing and mobile edge computing appear to be focused on 
the architectural level and on the mechanisms to realize 
dynamic allocation of virtual resources. They do not place 
significant attention on defining and supporting new paradigms 
for IoT application realization, and are more interested in 
extending traditional cloud concepts so that they could be used 
to perform computation at the edge of the network. 

SDN-based approaches, while very successful in wired 
network environments [26] [27], have received a limited 
attention for IoT/M2M applications. Valdivieso Caraguay et al. 
[28] provides an interesting review of the opportunities and 
challenges related to the application of SDN technologies to 
IoT. Da Silva et al. [29] applied SDN concepts to SCADA 
networks in order to constrain the potential eavesdropping of 
critical information. MINA [30] represents one of the first 
comprehensive SDN-based solutions for IoT applications, but 
it focuses mostly on low-level aspects such as flow scheduling 
and resource allocation and it does not consider D2D 
communications. 

Differing from related work that deals with specific aspects 
of enabling IoT applications, SPF adopts a more holistic 
approach by considering the application developers perspective 
and introducing an innovative paradigm for IoT application 
definition and management. In addition, we note that the 
information processing solutions adopted by SPF go well 
beyond the ones currently proposed in the literature in enabling 
and supporting subjective (i.e., recipient-specific) information 
filtering and prioritization through VoI concepts. More 
specifically, this enables SPF to define prioritized application 
classes by specifying the rules to adopt in assessing the 
corresponding VoI. 

Finally, a considerable amount of research has been 
dedicated to non-trivial event detection in IoT networks using 
complex event processing [31] [32] and sophisticated semantic 
technologies [33]. These efforts are orthogonal and 
complementary to SPF, which instead adopts an architectural 
level approach and focuses on enabling and supporting the 
definition and deployment of IoT applications. Integration of 
complex event processing functions into SPF would be a very 
interesting research direction, and is left for future work. 

VIII. CONCLUSIONS AND FUTURE WORK 
The approach presented in this paper demonstrates that, 

paired with information processors deployed at the Internet/IoT 



edge and VoI-based disruption tolerant information 
dissemination solutions, SDN represents a very promising 
architecture for future urban computing applications. 

As we believe this research direction is worth further 
attention, we are going to extend SPF to also consider 
information generated by mobile devices of consumers. This 
would enable the development of interesting functions, e.g., the 
subscription to “trending” thematic information à la Twitter. 

We are also planning to investigate distributed and 
disruption tolerant architectures for the SPF Controller. In fact, 
the controller is the only centralized component in the SPF 
architecture, and raises single point of failure and performance 
bottleneck concerns. Finally, we will further develop the 
information processing functions of PIGs using both complex 
event processing and semantic methodologies and tools. 
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