
SPF: An SDN-based Middleware Solution to Mitigate
the IoT Information Explosion

Mauro Tortonesi1, James Michaelis2, Alessandro Morelli1, Niranjan Suri2,3, Michael A. Baker2
1Department of Engineering, University of Ferrara, Ferrara, Italy

mauro.tortonesi@unife.it, alessandro.morelli@unife.it
2United States Army Research Lab, Adelphi, MD, USA

james.r.michaelis2.civ@mail.mil, niranjan.suri.ctr@mail.mil, michael.a.baker.mil@mail.mil
3Florida Institute for Human and Machine Cognition, Pensacola, FL, USA

nsuri@ihmc.us

Abstract—Managing the extremely large volume of

information generated by Internet-of-Things (IoT) devices,
estimated to be in excess of 400 ZB per year by 2018, is going to
be an increasingly relevant issue. Most of the approaches to IoT
information management proposed so far, based on the collection
of IoT-generated raw data for storage and processing in the
Cloud, place a significant burden on both communications and
computational resources, and introduce significant latency. IoT
applications would instead benefit from new paradigms to enable
definition and deployment of dynamic IoT services and facilitate
their use of computational resources at the edge of the network
for data analysis purposes, and from smart dissemination
solutions to deliver the processed information to consumers. This
paper presents SPF (as in “Sieve, Process, and Forward”), an
SDN solution which extends the reference ONF architecture
replacing the Data Plane with an Information Processing and
Dissemination Plane. By leveraging programmable information
processors deployed at the Internet/IoT edge and disruption
tolerant information dissemination solutions, SPF allows to
define and manage IoT applications and services and represents
a promising architecture for future urban computing
applications.

Keywords—Internet of Things; Software Defined Networking;
Information Dissemination; Value of Information.

I. INTRODUCTION
A recent white paper from Cisco Systems Inc. predicts that

by 2018 Internet-of-Things (IoT) devices will generate more
than 400 ZB of data per year [1]. Consequently, a multitude of
IoT applications are expected to be deployed, each designed to
process data from IoT and mobile devices in urban
environments. However, IoT applications, especially those
designed to operate in complex urban computing environments
[2], require sophisticated computational and networking
architectures, so their realization presents significant
challenges.

From a system design perspective, handling the large
volume of information generated by IoT devices is going to be
an increasingly relevant issue. In fact, next-generation
applications will primarily run on mobile devices that operate
in a challenging, heterogeneous, and dynamic wireless
networking environment. They will, however, be required to
provide enough storage and computational power for the

processing of information as well as to create and manage
communication paths from information producers to
information processors and finally to information consumers,
while at the same time orchestrating the various application
entities involved.

However, many approaches realized so far, based on the
collection of IoT-generated data for storage and processing in
the Cloud, present several drawbacks. First, the cost of storage
can be very high and the latency in information delivery can be
substantial [3]. Second, the load on the network can be
excessively high. Finally, these approaches mostly consider
large one-time processing of large volumes of data, which is
not scalable. Rather than attempt to store and process all data
available in an IoT ecosystem, more practical approaches will
likely rely on selective filtering to aid in data storage and
dissemination.

The dissemination of processed information also presents
some challenging issues. In the urban computing environment,
characterized by heterogeneous and dynamic wireless
networking, the stakeholders using and managing IoT
applications cannot assume to be in control of the networking
infrastructure or even leverage TCP flows for efficient
information dissemination. Instead, applications need specific
middleware support to automatically take advantage of
communication optimization opportunities such as those
offered by Device-to-Device (D2D) communications and
mobile offloading techniques (i.e., switching from 4G/LTE to
WiFi communications in case an open hotspot is detected) [6].

We believe that these challenges could be effectively
addressed by adopting an SDN approach that considers
information processing and dissemination functions at the same
time, which represent two fundamentally interrelated aspects of
IoT applications. This could be achieved by extending the
reference SDN architecture proposed by the Open Networking
Foundation, replacing the Data Plane with an Information
Processing and Dissemination Plane.

This paper presents SPF (Sieve, Process, and Forward), an
SDN solution that aims to address the explosion of IoT data by
processing it at the edge of the network, in close proximity to
the source of its generation. In order to filter information
objects, SPF uses a minimum content difference threshold for

new IoT data to be considered for processing and
dissemination. In addition, SPF prioritizes dissemination of
critical information by ranking objects according to their
corresponding Value of Information (VoI) metric [5].

SPF is a middleware level solution that does not require
any control of the network infrastructure (e.g., 4G/LTE
networks) in order to be deployed. SFP relies on robust and
disruption-tolerant information dissemination solutions that can
naturally take advantage of the opportunities presented by
heterogeneous networks and D2D communications. This
approach enables easy development, deployment, and
management of IoT applications in urban computing
environments.

II. IOT APPLICATIONS IN URBAN COMPUTING ENVIRONMENTS
In the near future, IoT applications will put a huge burden

on network and computational resources. As many new
applications emerge, system designers will have to deal with
designing solutions capable of processing very large volumes
of data in a timely fashion.

Transmitting all raw IoT data to the Cloud for processing
requires a lot of bandwidth and computational resources,
introduces significant latency in the data analysis processes and
on the delivery of processed information, and places a
considerable strain on communication infrastructures.

This is especially true for the cellular network
infrastructure. Despite D2D communications representing an
interesting opportunity to mitigate the risks of encountering
performance bottlenecks at the evolved NodeB (eNB) base
stations [7] [8], the projected large volume of generated data
will still put a significant burden on the network. This situation
is further exacerbated by the increasing sophistication of
mobile devices, which opens the door for even more data
collection and processing applications. In particular, networks
will have to accommodate larger quantities of data as they pave
the way to mobile crowdsensing [9] and even anticipatory
mobile computing [10] scenarios.

A promising alternative involves pushing computational
resources towards the edge of the network, thus enabling low-
level data processing via available devices such as event
detection and data aggregation. This “fog computing”
approach is a vision that extends the long-time proposed
mobile and/or on-demand Cloud deployment [11] and is
similar to the notion of Agile Computing [6]. By keeping the
processing effort at the edge of the network and favoring peer-
to-peer communications, using D2D or WiFi ad-hoc, we avoid
conveying huge volumes of IoT data on the cellular
infrastructure and to the Cloud, which would negatively
impact the network infrastructure.

However, the quick evolution of hardware enables even
more agile, ad hoc solutions than current Cloud based
Infrastructure- or Platform-as-a-Service approaches. Modern
hardware solutions based on neuromorphic processors (such as
IBM’s True North Chip1), hybrid CPU/manycore (such as
Adapteva’s Parallela board2) or CPU/FPGA architectures (such

1 http://www.research.ibm.com/articles/brain-chip.shtml
2 http://www.adapteva.com/parallella-board/

as Xilinx’s Zynq-7000 SoC3), or ultra-cheap CPUs (such as the
new Raspberry Pi Zero) will enable the deployment of energy
efficient computing platforms capable of “Cloud-like” data
aggregation and processing at the network’s outer edges.
Leveraging those resources will require more dynamic
approaches.

Finally, the adoption of the “Big-Data” approach in IoT-
based ecosystems, based on the analysis of each single portion
of raw data available, may be susceptible to the “diamonds in
the raw data” fallacy [4]. According to this fallacy, with
increasingly large volumes of IoT data, proportional amounts
of valuable information will emerge. We argue that this
assumption might not always hold, and consequently that a
significant portion of future IoT applications could be better
served by a much more efficient approach based on the
accurate analysis of a small and targeted portion of IoT data.

To better illustrate the challenging requirements of IoT
applications, their increasing relevance, and their need for new
communications and computational paradigms, we introduce a
possible near future scenario in which IoT applications are
used to support participants and workers at a large Street Music
Festival. The Street Music Festival is an event involving a
relatively large number of street artists performing in an urban
environment, attracting a significant number of people.

Customers attending the festival (henceforth termed
participants) will be interested in information about
performances as well as vending options for both refreshments
and merchandise. Likewise, vendors will want to track general
participant activity to plan their sales activities. For instance, a
food vendor may want to time their cooking activities with the
conclusion of a nearby performance.

In order to preserve safety and security of participants, the
event will be worked by a team of Emergency Medical
Services (EMS) personnel and by a police force. EMS
personnel will want to track the number of people gathering in
each area for both resource allocation, e.g., deployment of
water, cooling centers, and staff, and management of
emergency requests. Likewise, the police force will be
interested in tracking the occurrence of criminal incidents, such
as drunk and disorderly felonies. Additionally, police will be
interested in indicators of potential incidents, such as large
vehicles fitting specific profiles that could be used for
malicious purposes.

In this scenario, the development and deployment of IoT
applications requires the installation and management of
communications and computational resources through a highly
multidisciplinary effort, approaches inspired by Software
Defined Networking (SDN) represent a very promising
research direction.

III. SPF DESIGN OVERVIEW
To address the issues discussed in Section II, we propose

SPF (Sieve, Process, and Forward), an SDN-inspired solution
that enables IoT data filtering (“sieve” phase), information

3 http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

extraction (“process” phase), and dissemination (“forward”
phase).

In SPF, an IoT application is simply a collection of related
services with the same priority and the same target users. A
service is a function implemented through the processing of
IoT data and dissemination of the resultant information that
users can activate on-demand. Examples of services include
audio/video analysis, as well as object tracking and counting.

The SPF Controller allows service providers (or managers)
to define IoT applications that provide a set of services. SPF
enables the definition of several concurrent applications, each
with different services and priority levels. In addition, the SPF
Controller receives user service requests and deploys services
accordingly. This enables the installation of services that
require resources for data analysis and information
dissemination only when they are needed.

We envision 3 roles for the stakeholders in the SPF
architecture: administrators, service providers, and users.
Administrators manage the SPF platform by deploying,
running, and operating SPF controllers and Programmable IoT
Gateways (PIGs), and making them available to service
providers. Service providers develop IoT applications, deploy
them, and take care of their management. Finally, users are
people who use SPF applications through a client app on their
smart devices. In our example, users of the SPF are
participants, the EMS, and the police force. We can imagine
that the management and service provider roles in this scenario
would be played by two corresponding commercial companies.

The SPF architecture, depicted in Fig. 1, is based on an
extended version the Open Network Foundation’s SDN
Architecture, with an Information Processing and
Dissemination Plane replacing the Data Plane. The two most
important components of SPF are a centralized SPF Controller
and a set of PIGs deployed at the 6LoWPAN/Internet edge of
the network.

The Application Plane of SPF contains all the IoT
applications developed and deployed by service providers.
Users running client versions of IoT applications on their

devices can send service requests to the SPF Controller,
typically using the 4G network. The PIGs selected by the SPF
Controller will process users’ requests and send the produced
responses, preferring D2D information dissemination
techniques over the use of 4G/LTE.

The functions of the Control Plane are provided by the SPF
Controller, which is in charge of deploying the information
processing and dissemination functions required by
applications. In case an application requests a different service,
the SPF Controller reprograms the PIGs accordingly, using
4G/LTE communications. Within the SPF Controller, the
Application Request Dispatcher component takes care of
receiving service requests from users, of coordinating with the
SPF Policy Manager component to identify the most
appropriate course of action, and of dispatching the
corresponding instructions to the interested PIGs.

The functions of the Information Processing and
Dissemination plane are provided by PIGs, which leverage the
set of filtering and communications functions implemented by
the software platform, according to the instructions received by
the SPF Controller. PIGs can be deployed directly on the
gateway nodes that connect 6LoWPAN networks to the
Internet or on dedicated hardware placed in the gateway nodes’
proximity. For simplicity, the rest of this paper will assume the
usage of reasonably powerful gateway nodes, each capable of
hosting an SPF PIG software component.

Most PIGs will be installed in nodes with multiple
communication links: typically Wi-Fi, 4G/LTE, and IEEE
802.15.4, but occasionally also Bluetooth-LE and NFC. The
4G/LTE interface is the only infrastructure-based
communications available, allowing (relatively) reliable
communications with, e.g., the SPF Controller for
reconfiguration purposes. However, 4G/LTE communications
are rather resource intensive and are not the preferred solution
for battery-operated devices, as many PIGs will be. In fact,
SPF enables dissemination of processed information by
leveraging short-range device-to-device communications,
which, albeit less reliable, represents a solution significantly
less resource intensive and particularly well suited for urban
computing environments with high node density and node
mobility.

The Management Plane provides 3 sets of APIs with
independent goals. The Application Definition API enables
service providers to define IoT applications and all related
configurable parameters. The Platform Control API allows
administrators to manage the SPF Controller by giving them
the capability to add new PIGs, configure specific information
policies or increase/reduce the priority of some applications,
and so on. Finally, the Device Control API gives administrators
the possibility to control PIGs: this API defines functions to
reprogram the number of processing resources allocated for
specific services, choose the network interface through which
service responses are sent, select the type of information
dissemination algorithm to use, and so forth.

Fig. 1. The SPF Architecture

IV. IOT APPLICATION DEFINITION

A. Definition of IoT Applications and Services
The SPF Controller enables managers to define IoT

applications and the corresponding services they implement
using a dedicated Domain Specific Language (DSL). Each
application has several aspects that can be configured, such as:
a name, a priority level (between 1 and 100), a set of allowed
service types provided to the users, and a set of service
configurations and dissemination policies. SPF enables IoT
applications to receive specific priority levels in order to
differentiate between critical and best-effort applications.
Service configurations control how the application deals with
user service requests of the corresponding type. Dissemination
policies instead control all the configurable aspects involved in
the information dissemination process, such as: the
dissemination channel, the maximum transmission frequency,
the maximum number of retransmissions, the obsolescence
management policy for the information objects managed by the
application, etc.

For instance, in the street music festival scenario from
Section II, we could have 3 different IoT applications that
support the needs of festival participants, EMS personnel, and
police forces respectively.

The Participants IoT application only allows 2 types of
service requests: “find” and “listen”. The find service allows
users to look for a specific object, e.g., a text string, in the IoT
data. The listen service allows users to request names for songs
played in different parts of the festival area, by leveraging a
song detection function like those in SoundHound4 or Shazam5.
Each of those services also has a service configuration that
states that the value of information decays linearly as the
distance between user and information source and the time
between service request and information generation increase.
The Participants applications also has a dissemination policy
that defines the information dissemination channel on which
information objects will be conveyed to reach their requestors,
and the corresponding parameters. The EMS and “Police
applications are defined in similar ways. However, they have
higher priorities, no restrictions on the type of services
allowed, and more aggressive information dissemination
policies.

As with service types, dissemination strategies will vary
amongst the 3 applications. A key distinction between the
strategies lies in management of object re-transmissions. In the
case of the participant application, only one attempt to re-
transmit a dropped object is made, after a 30 second wait. By
contrast, the police application attempts 60 re-transmissions at
10 second intervals. Additionally, while the Participants and
EMS applications will overwrite old objects with newer
versions, the Police application also retransmit copies of older
object versions (potentially aiding in ongoing investigations).

Another distinction between the dissemination strategies
lies in the broadcast channel utilization. In the street music
festival scenario, data transmission can be either over local

4 SoundHound: http://www.soundhound.com/
5 Shazam: http://www.shazam.com/

cellular networks or non-cellular WiFi networks set up on the
festival grounds. To ensure continuous reliability of local
cellular networks, limitations on their usage are taken into
consideration. For instance, the Participants application is
restricted to WiFi-only transmissions. Likewise, for message
re-transmission the EMS application will attempt to use both
the cellular and WiFi networks for 1 in 5 transmissions, while
the Police application will use both for each transmission. This
behavior can be controlled by indicating what percentage of
transmissions (by default, 100%) SPF should perform over a
particular channel. In general, the careful usage of the many
communication resources available represents one of the most
important points in an IoT service definition.

B. User Service Requests Management
The SPF Controller receives service requests from users

and instantiates the corresponding services accordingly. This
allows for dynamic behavior that triggers the execution of
information processing and dissemination only when they are
actually needed. Since SPF request messages are short, for
reasons of simplicity and to avoid increasing latency
unnecessarily by employing disruption-tolerant information
dissemination techniques, SPF client applications exploit 4G
links to send requests to the SPF Controller.

Upon receipt of service requests from users, the SPF
Controller updates the state of the service and contacts the
PIGs to update their configuration. More specifically, the SPF
Controller provides updated information about the number of
requests for a given service and the location of the service user
closest to the gateway, and changes the configuration of the
information dissemination channels in response to a sudden
spike (or drop) in the number of service users.

For instance, in the Street Music Festival scenario,
Participants are interested in finding information about where
they can purchase water and what songs are being played in
their proximity. Likewise, EMS personnel are interested in
counting the number of participants on the festival grounds, in
order to allocate their resources appropriately. Finally, the
police force wants to count the number of large vehicles going
towards the festival location. Once these requests reach the
SPF Controller, they are processed and trigger corresponding
reprogramming of the PIGs.

V. INFORMATION PROCESSING AND DISPATCHING
The Programmable IoT Gateway (PIG), whose architecture

is depicted in Fig. 2, is the component of SPF in charge of
information processing and dissemination. The PIG behavior is
fully programmable based on the instructions received by the
SPF Controller.

A. Dynamic Instantiation of Information Processors
The processing of data is performed by several information

processors (or pipelines) that are set up by the Programmable
Controller, according to the instructions received by the SPF
Controller. Pipelines, depicted as a cog wheel and funnel
sequence in Fig. 2, have the purpose of analyzing raw data to
obtain higher-level information, e.g., functions to implement
object tracking, object counting, optical character recognition
(OCR), and speech-to-text.

For each message m containing raw data received from the
6LoWPAN, the Information Processor checks which set of
services 𝑅! are relevant and tags the message accordingly.
Then, the Information Processor detects which set of pipelines
𝑅! are relevant for message m, creates 𝑅! − 1 duplicates of m,
and forwards the messages to the pipelines. For instance, a
message containing a video frame would be relevant to the
Find Water service for the Participants application, to the
Count People service of the EMS application, and to the Track
Vehicles service of the Police application. As those services
respectively require OCR processing, object counting, and
object tracking, copies of the video frame message would be
forwarded to the three corresponding pipelines. Note that, in
order to minimize the number of information processing tasks,
a pipeline performing a specific processing task can be shared
between different services.

To minimize the number of information processing tasks,
SPF optionally allows implementation of content-wise filtering
of the data that is considered for processing, also referred to as
the Sieve phase. To this end, each pipeline keeps a memory of
configurable size (defaulting to 5 messages) that stores the raw
data messages recently processed. Before the actual processing,
each message is compared with the messages stored in the
pipeline memory. Here, 𝜎 is defined as the difference between
the information contained in the new message and the ones
stored in memory. If the amount of new information 𝜎 is larger
than the pipeline’s minimum filtering threshold 𝜏!"# , the
message is processed, and is otherwise discarded. For instance,
a 0.05 filtering threshold value means that new data will only
be considered for processing if it differs at least 5% from data
stored in memory.

The Process component of SPF is managed via a collection
of data-processing pipelines, each instantiated for a particular
information processing task, e.g., video processing for object
counting, photo processing for OCR, etc. Pipelines will
typically be implemented by software. For instance, we are

currently implementing basic object recognition / tracking and
OCR functions based on open source software including

OpenCV 6 and Tesseract 7 . However, pipelines might also
leverage existing hardware resources for information
processing purposes, such as FPGAs, many-core CPUs, or
neuromorphic processors.

After the pipeline processing, the message containing raw
data is transformed into an Information Object (IO). Then, the
Information Processing component calculates the VoI of the IO
for each service 𝑟 ∈ 𝑅! using formula (1). It then hands the IO
and the corresponding VoI to the Information Dissemination
component.

B. Value of Information-based Prioritization
To prioritize the dissemination of important information,

SPF leverages concepts from Value of Information (VoI)
research, which represents one of the most promising avenues
for information filtering and prioritization in IoT applications.
In fact, by associating a dynamic and recipient-specific value
to each Information Object (IO), VoI based methodologies and
tools represent a natural way to filter and prioritize information
[5].

Multiple definitions exist in the literature for VoI, and it is
commonly quantified as the degree of benefit a piece of
information provides to decision makers. In [5], the authors
define VoI as a metric specific to the needs of particular
consumers, as opposed to intrinsic attributes of information
termed Quality of Information (QoI). In other words, while an
information object may have high intrinsic quality, its value to
one consumer may be different than to others. As an example
from the Street Music Festival scenario, consider a high-quality
(e.g., high resolution) image of a van with tinted windows
pulling up near a performance stage. While this image may
have low value to participants, it could have a much higher
value for police and security forces. Since the quality of this
image can impact its ultimate value, [5] also considers QoI as a
key part of establishing VoI. By exploiting VoI, SPF can
transmit information to appropriate consumers while regulating
resource consumption at the edge of the network.

SPF calculates VoI according to four factors: Application
Priority (PR), Normalized Number of Requests (RN),
Timeliness Relevance (of Request) Decay (TRD), and Proximity
Relevance (of Request) Decay (PRD).

Each IoT application in SPF is assigned a priority PR. This
is used to establish an ordering in which corresponding
information should be sent through the network, independently
from others VoI factors.

We expect that the size of consumer populations will vary
across different IoT applications. Therefore, SPF calculates the
RN factor to normalize the VoI of each Information Object (IO)
based on the size of their respective consumer populations.

The SPF model decreases the VoI of IOs over time using
the obsolescence profile modifier, which affects the value of
TRD. SPF supports three types of VoI obsolescence profiles:
constant, linear decay, and exponential decay. In the constant
profile, the VoI of an IO remains constant over time (TRD

6 http://opencv.org/
7 https://github.com/tesseract-ocr/tesseract

Fig. 2. The SPF Programmable IoT Gateway.

always equals 1). In the linear decay profile, VoI decreases
from a maximum value of 100% (TRD = 1) at the time of
information generation t!, to a value of 0% (TRD = 0) at time
t = t! + τ!"#$%. In general, most applications will want to use
the linear or exponential VoI profile modifiers, as the constant
VoI profile is designed for the most critical IOs only.

SPF also takes into consideration the geographic distance
between a consumer and the location corresponding to an
information object to compute VoI. In fact, distance values can
impact potential usefulness to consumers - knowledge of a
vendor on the opposite side of the concert grounds may not be
useful, while knowledge of a closer vendor could be.
Therefore, an obsolescence profile modifier similar to that used
to compute TRD is applied to proximity, which determines the
value of factor PRD. Again, linear and exponential VoI profile
modifiers are expected to be relevant to most tasks, while the
constant modifier will only apply to the most critical IOs.

Based on the four proposed factors, SPF’s corresponding
VoI calculation formula is defined as:

𝑉𝑜𝐼(𝑜, 𝑟, 𝑡, 𝑎) = 𝑃!(𝑎) ∗ 𝑅!(𝑟)
∗ 𝑇!"(𝑡,𝑂!(𝑜))
∗ 𝑃!"(𝑂!(𝑟),𝑂!(𝑜))

(1)

where o is an information object, r the recipient, t the current
time, a the application, 𝑂! and 𝑂! are operators that retrieve,
respectively, the time and location of origin of objects and
recipients.

C. Information Delivery over Dissemination Channels
Once they are ready for dissemination, IOs are transferred

to corresponding service dispatchers. Service dispatchers are
the entities in charge of the information dissemination process
for a specific service. Each service dispatcher maintains a
transmission queue, where IOs are ordered according to their
corresponding VoI score. IOs with higher VoI scores are
transmitted first and those with lower VoI scores are
transmitted later.

Infrastructure-based communications will typically be
available through 4G/LTE connectivity. However, in addition
to their relatively intensive energy consumption, cellular
communications can significantly deteriorate when used by a
very large number of consumers. For these reasons, service
dispatchers will typically prefer conveying IOs over a variety
of short-range and D2D communications. In fact, the way the
service dispatchers use these devices represents one of the most
important policies for IoT service definition.

For instance, for the Find Water service in the Street Music
Festival scenario, SPF could leverage D2D communications
(Wi-Fi, Bluetooth, or NFC) to enable the dissemination of IOs
reporting the locations where participants could find water
without burdening the 4G/LTE infrastructure. Infrastructure-
less communications could also enable the dissemination of
IOs in locations that cannot be easily reached using
infrastructure-based communications, such as subway stations.

From the communications perspective, our approach builds
on top of our previous research on information dissemination
in opportunistic networking and tactical network environments.
More specifically, SPF implements its Forward phase by

leveraging the information dissemination functions provided
by the DisService8 [12] [6] software package.

DisService implements disruption-tolerant publish-
subscribe communications by supporting multiple independent
virtual communication channels, called subscriptions, and is
designed to operate in highly dynamic networking
environments. To optimize communications, DisService nodes
use aggressive message-caching policies and keep track of
each other’s contact history. This enables nodes to infer
knowledge about their surrounding environment, which can be
used to detect and leverage message ferrying nodes [13].

SPF uses a dedicated DisService subscription for each IoT
application. The dissemination policies for IoT services can
also be individually tuned with several parameters, such as the
aggressiveness in IO retransmissions and copying, and the
aggressiveness in caching usage.

D. Programmable controller
The Programmable Controller is the component responsible

for setting up the information processing pipelines, the service
dispatchers, and the information dissemination channels
according to the instructions received by the SPF Controller.

The Programmable Controller listens on the 4G/LTE
interface and waits for a program or service configuration
update from the SPF Controller. In fact, during the execution
of IoT applications and services, the Programmable Controller
can (and typically will) receive additional requests for a new
service installation or for the reconfiguration of an existing
service, e.g., in case a much larger pool of users ends up using
that service. In this case, the Programmable Controller will
configure the information processing and dissemination
pipelines according to the instructions received from the SPF
Controller, instantiating processing components if necessary.

The Programmable Controller is also in charge of
managing computational resources and of activating the
hardware and software components required for the
information processing. For instance, for the Find Water
service presented in the Street Music Festival scenario, the
Programmable Controller is capable of understanding that the
object of the find command is a textual string. So, it will
instantiate an OCR software component to analyze messages
containing pictures and extract any text they contain. Similarly,
for an object tracking service the Programmable Controller will
instantiate a video processing software component that will try
to detect large vehicles coming towards the festival grounds.

VI. IMPLEMENTATION AND FIRST EVALUATION
We have developed a prototype implementation of SPF

using the JRuby platform and have released it as open source
under the MIT license. The prototype is available for download
at: https://github.com/mtortonesi/spf.

We have also developed an Android application that
implements a prototype client version of the Participants
application in the Street Music Festival scenario. Our
application allows the user to send “find”-type requests to a
remote SPF Controller, automatically enriched with

8 DisService is open source: https://github.com/ihmc/nomads

geolocation data. Information on the device position is used for
VoI computations and to improve the performance of particular
information dissemination strategies. The application interfaces
with the DisService application for Android to receive IOs sent
by PIGs over DisService.

We also implemented 2 image processing pipelines: Car
Count, which counts the number of vehicles appearing in an
image using the Haar Cascade Classifier algorithm, and OCR,
which identifies the portions of containing text, cuts them, and
extrapolates the text contained in them. Both pipelines are
implemented in Java leveraging the functions provided by the
OpenCV 3.0 library and the Tesseract and Tess4J components.

We conducted a small experiment to assess the
effectiveness of SPF in managing IoT information object
throughput, using a PIG on a machine with Ubuntu Linux
15.10 64bit, equipped with an Intel Core 2 Duo P8400 CPU at
2.26GHz and 4GB of RAM, and running the Java 7 HotSpot
64-Bit Server VM. Table 1 shows some preliminary results
with respect to the average image processing time obtained for
the Car Count and OCR pipelines, using pools of 2, 4, and 8
threads. For the experiment, we fed each pipeline with a
dataset of 100 and 64 images for Car Count and OCR,
respectively, and each experiment was repeated three times for
every possible value of the thread pool size. In addition, the
last two columns of the table show the amount of data at the
entry and exit points of the pipelines. A difference of three
orders of magnitude between input and output size emerges
from our experiments, which led us to believe that moving data
analysis and feature extraction from the Cloud to the edge of
the network can be incredibly effective in reducing strain on
the network infrastructure.

TABLE I. AVERAGE PROCESSING TIME PER IMAGE WITH DIFFERENT
THREAD POOL SIZES (2, 4, AND 8) FOR THE CAR COUNT AND OCR PIPELINES

 Avg. pr. t.
p.i. (ms)
p.t.s. 2

Avg. pr. t.
p.i. (ms)
p.t.s. 4

Avg. pr. t.
p.i. (ms)
p.t.s. 8

Input
Size

(MB)

Output
Size
(KB)

Car
Count 311.05 286.34 257.41 11.3 8.2

OCR 958.31 934.70 997.224 13.5 19.3

VII. RELATED WORK
A significant amount of research has focused on the

problem of data reduction for IoT/M2M applications.
Researchers have proposed sophisticated information theoretic
and data centric solutions that enable the collection of a subset
of IoT data with high entropy levels [14]. In addition, many
studies have addressed the more specific problem of data
reduction for time series, which are arguably the most widely
used data structure in IoT applications [3] [15] [16] [17].

The Quality- and Value-of-Information concepts are
relatively novel and have been recently proposed and
investigated in the sensor network research area, following the
seminal work by Howard [18] and more recent developments
in economic and decision theories [19] [20]. More specifically,
researchers have developed system-wide i.e., non-consumer
specific, and time-invariant QoI- and VoI-based data reduction
solutions leveraging multiple-criteria decision making
techniques such as the Analytic Hierarchy Process [21] and

Von Neumann-Morgenstern utility functions [22]. Other
proposals devised more sophisticated schemes that consider
time-varying properties in VoI metrics to optimize the
scheduling of message transmissions [23] or the traveling path
of unmanned data harvesters [24] in underwater wireless
sensor networks. To the best of our knowledge, the
investigation of time-varying and consumer-specific VoI
metrics for dynamic information filtering and prioritization in
tactical networks has only been recently investigated in [5].

The fog computing and mobile edge computing research
areas also focus on the deployment and exploitation of
computational resources at the edge of the network, in
proximity to the data sources and to the service consumers [11]
[25]. While they represent very promising research areas, fog
computing and mobile edge computing appear to be focused on
the architectural level and on the mechanisms to realize
dynamic allocation of virtual resources. They do not place
significant attention on defining and supporting new paradigms
for IoT application realization, and are more interested in
extending traditional cloud concepts so that they could be used
to perform computation at the edge of the network.

SDN-based approaches, while very successful in wired
network environments [26] [27], have received a limited
attention for IoT/M2M applications. Valdivieso Caraguay et al.
[28] provides an interesting review of the opportunities and
challenges related to the application of SDN technologies to
IoT. Da Silva et al. [29] applied SDN concepts to SCADA
networks in order to constrain the potential eavesdropping of
critical information. MINA [30] represents one of the first
comprehensive SDN-based solutions for IoT applications, but
it focuses mostly on low-level aspects such as flow scheduling
and resource allocation and it does not consider D2D
communications.

Differing from related work that deals with specific aspects
of enabling IoT applications, SPF adopts a more holistic
approach by considering the application developers perspective
and introducing an innovative paradigm for IoT application
definition and management. In addition, we note that the
information processing solutions adopted by SPF go well
beyond the ones currently proposed in the literature in enabling
and supporting subjective (i.e., recipient-specific) information
filtering and prioritization through VoI concepts. More
specifically, this enables SPF to define prioritized application
classes by specifying the rules to adopt in assessing the
corresponding VoI.

Finally, a considerable amount of research has been
dedicated to non-trivial event detection in IoT networks using
complex event processing [31] [32] and sophisticated semantic
technologies [33]. These efforts are orthogonal and
complementary to SPF, which instead adopts an architectural
level approach and focuses on enabling and supporting the
definition and deployment of IoT applications. Integration of
complex event processing functions into SPF would be a very
interesting research direction, and is left for future work.

VIII. CONCLUSIONS AND FUTURE WORK
The approach presented in this paper demonstrates that,

paired with information processors deployed at the Internet/IoT

edge and VoI-based disruption tolerant information
dissemination solutions, SDN represents a very promising
architecture for future urban computing applications.

As we believe this research direction is worth further
attention, we are going to extend SPF to also consider
information generated by mobile devices of consumers. This
would enable the development of interesting functions, e.g., the
subscription to “trending” thematic information à la Twitter.

We are also planning to investigate distributed and
disruption tolerant architectures for the SPF Controller. In fact,
the controller is the only centralized component in the SPF
architecture, and raises single point of failure and performance
bottleneck concerns. Finally, we will further develop the
information processing functions of PIGs using both complex
event processing and semantic methodologies and tools.

REFERENCES
[1] Cisco Systems Inc., “Cisco Global Cloud Index: Forecast and

Methodology, 2013–2018”, 2014, available at:
http://www.cisco.com/c/en/us/solutions/collateral/service-
provider/global-cloud-index-gci/Cloud_Index_White_Paper.html
(retrieved on December 1st, 2015).

[2] Y. Zheng et al., “Urban Computing: Concepts, Methodologies, and
Applications”, ACM Transactions on Intelligent Systems and
Technologies, Vol. 5, No. 3, Article 38, September 2014.

[3] A. Papageorgiou, B. Cheng, E. Kovacs, “Real-Time Data Reduction at
the Network Edge ofInternet-of-Things Systems”, in Proceedings of
11th International Conference on Network and Service Management
(CNSM), 2015.

[4] N. Silver, “The Signal and the Noise: Why So Many Predictions Fail -
But Some Don’t”, Penguin Press, 2012.

[5] N. Suri et al., “Exploring Value of Information-based Approaches to
Support Effective Communications in Tactical Networks”, IEEE
Communications Magazine, Vol. 53, No. 10 (Special Feature on
Military Communications), October 2015.

[6] G. Benincasa et al., “Agile Communication Middleware for Next-
generation Mobile Heterogeneous Networks”, IEEE Software, Vol. 31,
No. 2 (Special Issue on Next Generation Mobile Computing), pp. 54-61,
March-April 2014.

[7] A. Asadi, Q. Wang, V. Mancuso, “A Survey on Device-to-Device
Communication in Cellular Networks”, IEEE Communications Surveys
& Tutorials, Vol.16, No.4, pp.1801-1819, Fourth quarter 2014.

[8] X. Lin, J. Andrews, A. Ghosh, R. Ratasuk, “An overview of 3GPP
device-to-device proximity services”, IEEE Communications Magazine,
Vol.52, No.4, pp.40-48, April 2014.

[9] G. Cardone, A. Corradi, L. Foschini, R. Ianniello, “ParticipAct: a Large-
Scale Crowdsensing Platform”, to appear in IEEE Transactions on
Emerging Topics in Computing, 2015.

[10] V. Pejovic, M. Musolesi, “Anticipatory Mobile Computing: A Survey of
the State of the Art and Research Challenges”, ACM Computing
Surveys, Vol. 47, No. 3, Article 47, April 2015.

[11] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, “Fog computing and its role
in the internet of things”, in Proceedings of the first edition of the MCC
workshop on Mobile cloud computing (MCC '12), New York, NY, USA,
pp. 13-16.

[12] N. Suri et al., “Peer-to-Peer Communications for Tactical Environments:
Observations, Requirements, and Experiences”, IEEE Communications
Magazine, Vol. 48, No. 10 (Special Feature on Military
Communications), pp. 60-69, October 2010.

[13] M. Marchini et al., “Predicting Peer Interactions for Opportunistic
Information Dissemination Protocols”, in Proceedings of the 17th IEEE
Symposium on Computers and Communication (ISCC 2012), 1-4 July
2012, Cappadocia, Turkey.

[14] H.-Y. Hsieh, C.-H. Chang, W.-C. Liao, “Not Every Bit Counts: Data-
Centric Resource Allocation for Correlated Data Gathering in Machine-
to-Machine Wireless Networks”, ACM Transactions on Sensor
Networks, Vol. 11, No. 2, Article 38, March 2015.

[15] F. Chung, T. Fu, R. Luk, V. Ng, “Flexible time series pattern matching
based on Perceptually Important Points”, in Proceedings of
International Joint Conference on Artificial Intelligence, Workshop on
Learning from Temporal and Spatial Data, pp. 1–7, 2001.

[16] K. B. Pratt, E. Fink, “Search for Patterns in Compressed Time Series”,
International Journal of Image and Graphics, Vol. 2, No. 1, pp. 89–106,
2002.

[17] B.-K. Yi, C. Faloutsos, “Fast Time Sequence Indexing for Arbitrary Lp
Norms”, in Proceedings of the 26th International Conference on Very
Large Data Bases, VLDB ’00, pp. 385–394, 2000.

[18] R. Howard, “Information Value Theory”, IEEE Transactions on Systems
Science and Cybernetics, Vol.2, No.1, pp.22-26, Aug. 1966.

[19] S. Galanis, “The Value of Information under Unawareness”, Journal of
Economic Theory, Vol. 157, pp- 384-396, May 2015.

[20] J. Quiggin, “The Value of Information and the Value of Awareness”, to
appear in Theory and Decision, 2015, DOI:
10.1007/s11238-015-9496-x.

[21] C. Bisdikian, L. Kaplan, M. Srivastava, “On the quality and value of
information in sensor networks”, ACM Transactions on Sensor
Networks, Vol. 9, No. 4, Article 48, pp. 48:1-48:26, July 2013.

[22] D. Cansever, “Value of Information”, in Proceedings of 2013 Military
Communications Conference (MILCOM 2013), pp. 1105-1108, San
Diego, CA, USA, 18-20 November 2013.

[23] L. Bölöni, D. Turgut, S. Basagni, C. Petrioli, “Scheduling Data
Transmissions of Underwater Sensor Nodes for Maximizing Value of
Information”, in Proceedings of the 2013 IEEE Global Communications
Conference (GLOBECOM 2013), pp. 460-465, 9-13 December 2013.

[24] S. Basagni et al., “Maximizing the Value of Sensed Information in
Underwater Wireless Sensor Networks via an Autonomous Underwater
Vehicle”, in Proceedings of the 33rd Annual IEEE International
Conference on Computer Communications (INFOCOM 2014), Toronto,
Canada, 27 April – 2 May, 2014.

[25] European Telecommunications Standards Institute, “Mobile-Edge
Computing – Introductory Technical White Paper”, ETSI Technical
Report, September 2014.

[26] A. Lara, A. Kolasani, B. Ramamurthy, “Network Innovation using
OpenFlow: A Survey”, IEEE Communications Surveys & Tutorials,
Vol.16, No.1, pp.493-512, First Quarter 2014.

[27] D. Kreutz et al., “Software-Defined Networking: A Comprehensive
Survey”, Proceedings of the IEEE, Vol. 103, No.1, pp.14-76, Jan. 2015.

[28] Á. L. Valdivieso Caraguay, A. B. Peral, L. I. Barona López, L. J. García
Villalba, “SDN: Evolution and Opportunities in the Development IoT
Applications”, International Journal of Distributed Sensor Networks,
Vol. 2014, Article ID 735142, 10 pages, 2014.

[29] E. G. da Silva et al., “Capitalizing on SDN-based SCADA systems: An
anti-eavesdropping case-study”, in Proceedings of 14th IFIP/IEEE
International Symposium on Integrated Network Management (IM
2015), Ottawa, Canada, 11-15 May 2015.

[30] Q. Zhijing et al., “A Software Defined Networking architecture for the
Internet-of-Things”, in Proceedings of 14th IEEE/IFIP Network
Operations and Management Symposium (NOMS 2014) – Special
Session on IoT Management, Krakow, Poland, 5-9 May 2014.

[31] R. Mayer, B. Koldehofe, K. Rothermel, “Predictable Low-Latency
Event Detection With Parallel Complex Event Processing”, IEEE
Internet of Things Journal, Vol. 2, No. 4, pp. 274-286, August 2015.

[32] G. Cugola, A. Margara, “Processing flows of information: From data
stream to complex event processing”, ACM Computing Surveys, Vol. 44,
No. 3, Article 15, June 2012.

[33] S. Hasan, E. Curry, “Approximate Semantic Matching of Events for the
Internet of Things”, ACM Transactions on Internet Technology, Vol. 14,
No. 1, Article 2, August 2014

