Session Mobility in the Mockets Communication Middleware

Cesare Stefanelli, Mauro Tortonesi
{cstefanelli, mtortonesi}@ing.unife.it
Engineering Department, University of Ferrara,
Ferrara, Italy

Erika Benvegnu, Niranjan Suri
{ebenvegnu, nsuri}@ihmc.us
Florida Institute for Human & Machine Cognition
Pensacola, FL, USA

Abstract

Taking advantage of the benefits of modern
networking, a growing number of users are exhibiting
mobile behavior. As they roam between different
network localities, they access the Internet and the
Web exploiting both wired and wireless
communications and using several heterogeneous
devices. Mobile users want to access their subscribed
services anywhere, anytime, and want to preserve their
currently opened service sessions as they roam
between different network localities or switch between
different devices. Mobile users’ requirements call for
novel middlewares to provide support for mobility on
top of the traditional Internet infrastructure. In this
context, we have developed Mockets, a communication
middleware specifically designed to address the
challenges of wireless networks and mobile computing.
In particular, Mockets supports session mobility in
terms of seamless handover for preservation of end-to-
end connectivity in spite of node mobility, automatic
detection and exploitation of best available
connectivity, and migration of service session
endpoints from one node to another.

1. Introduction

Modern networking technologies enable users to be
on-line while moving. As they roam between different
network localities, they access the Internet and the Web
exploiting both wired and wireless connectivity, e.g.,
via IEEE 802.3, IEEE 802.11, and Bluetooth. In
addition, users exploit several heterogeneous devices,
e.g., smart phones, PDAs, laptops, and desktops. In this
scenario, mobile users want to access their subscribed
services anywhere, anytime. This introduces new and
challenging requirements because users want to

978-1-4244-2703-1/08/$25.00 ©2008 IEEE

preserve their currently opened service sessions as they
roam between different network localities and even
when they switch to a different device.

The requirements of mobile users are not satisfied
by the traditional Internet infrastructure, which is the
substrate upon which most applications are constructed.
In fact, the Internet Protocol Suite does not support
mobility of service sessions, thus causing the
interruption of established services upon node
migration to a different network location or when
switching to a different device [1]. Mobile users’
requirements call for novel communication
middlewares for the support of service sessions that are
resilient to both user and node mobility. When built on
top of the Internet Protocol Suite, the new middlewares
could achieve high portability and easy deployment,
although the Internet networking environment requires
to take security in due consideration.

In this context, we have developed Mockets, a
communication middleware specifically designed to
address the challenges of wireless networks and mobile
computing [2] [3]. Mockets (that stands for mobile
sockets) is an application-level library that resides on
top of the operating system and communication
protocol stack and enables the realization of mobile
distributed applications.

In particular, this paper presents the Mockets
support for session mobility, providing a theoretical
characterization of mobile service sessions, an in-depth
overview of the Mockets features enabling session
mobility, and the detailed description of the
architecture and implementation of our framework.

Mockets preserves end-to-end connectivity of
service sessions in spite of node mobility, allowing
users to traverse different networks without breaking
their open service sessions. In addition, Mockets
automatically takes advantage of best network

596

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 14:16 from IEEE Xplore. Restrictions apply.

connectivity in case mobile nodes enter locations where
several networks overlap or multiple network
attachment points are simultaneously available. Finally,
Mockets enables the migration of session endpoints to
different nodes, allowing users to preserve their
subscribed service sessions when switching to a
different device. The Mockets support for session
mobility enables the realization of novel distributed
applications which are better suited to the wireless
Internet environment.

Mockets-based mobile sessions have already been
adopted in several mobile agents applications on the
NOMADS platform [4], thus enabling mobile agents to
migrate from host to host while maintaining their
connections, as well as in dynamic service oriented
architectures with Agile Computing [5], where services
are migrated from one node to another without
interrupting the communication with their clients. In
addition, Mockets has been successfully used by the
Army Research Laboratory as part of the Warrior's
Edge initiative of the Horizontal Fusion Portfolio's
Quantum Leap demonstrations and in the C4ISR On
The Move exercise.

2. Supporting Mobility in the Wireless
Internet

The Internet infrastructure has greatly changed in
recent years. Thanks to the advances in wireless and
cellular technologies, the traditional broadband/cabled
Internet is now complemented by many local wireless
and cellular networks, thus creating a scenario
commonly referred to as the wireless Internet [6]. Users
can now easily move in the wireless Internet while
accessing on-line services. For instance, they can travel
from their homes to airport/railway/underground
stations, to their company buildings, and finally to their
offices, dynamically exploiting a wide range of
different and sometimes overlapping networks, e.g., a
GPRS/UMTS cellular network, an IEEE 802.11
municipal WLAN, and an IEEE 802.3 office LAN. In
practice, mobile users typically take advantage of a
combination of wired and several wireless networking
technologies, with many using wireless networks unless
they require the high-bandwidth provided by wired
networks. In addition, mobile users exploit a plethora
of heterogeneous devices, e.g., smart phones, PDAs,
laptops, and desktop PCs.

Mobile users in the wireless Internet have new
requirements which were not supported by the
traditional Internet infrastructure. Not only do mobile
users want to access their subscribed services
anywhere, anytime, but they want their currently

opened service sessions to be continuously available as
they roam between different network localities. In
addition, users want to exploit the best available
network connectivity in a transparent and uninterrupted
manner. Finally, users want to be able to switch to
different devices while preserving the currently opened
service sessions. In short, there is the need to support
mobile service sessions, i.e., service sessions that can
continue even in the presence of both user and node
mobility or when changing network connectivity.

Session mobility is not addressed in traditional IP-
based middlewares and calls for the introduction of
novel middlewares better suited to the wireless Internet
environment and to mobile users requirements. While
there are many issues to be considered when dealing
with middlewares supporting mobile service sessions,
such as location/tracking, discovery, and security, this
paper focuses only on the main issue of supporting
session mobility. In particular, mobile sessions should
not break as nodes roam between network localities
(preserving end-to-end connectivity), they should
dynamically and automatically rebind to different
networks or network interfaces in order to take
advantage of the best available connectivity (automatic
network selection), and the mobile session endpoints
should be able to migrate to a different node (endpoint
migration).

Preserving end-to-end connectivity of service
session in spite of terminal mobility requires support
for session handoff between different network layer
addresses. Not only does this require a mechanism to
change the network layer address of the session without
tearing it down and restarting it, but it also requires
notification of changes to the peer endpoint after the
handoff. In addition, to promptly respond to node
mobility, the mobility middleware must continuously
monitor the current network attachment point in order
to detect changes in network access point, and to react
accordingly.

The need for automatic network selection occurs
because mobile nodes might enter locations where
several network overlap, or where several
communication links using different technologies, e.g.,
IEEE 802.11 and Bluetooth, are simultaneously
available. Mobility middleware should detect the best
available network connectivity and should perform the
handover of all the currently open sessions.

Finally, the case for session endpoint migration
arises from the fact that mobile users typically exploit
different devices in their roaming, e.g., a PDA while
travelling, a desktop PC in the office, and a laptop at
home, frequently switching between them. Session
endpoint should move from one host to another so that

597

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 14:16 from IEEE Xplore. Restrictions apply.

users can preserve their subscribed service sessions
when switching to a different device, without having to
close and restart them. This needs mechanisms to
suspend a connection, to save its state, to transfer it to
the new node, and finally to resume the connection
from the saved state.

3. Related Work

Many research studies have addressed the problem
of preserving end-to-end connectivity of service
sessions on mobile nodes. Network-level proposals,
such as Mobile IP/IPv6 and HIP, try to disambiguate
the dual nature of locator and identifier of IP addresses
upon which the Internet Protocol Suite is built [1]. In
particular, they assign unique identifiers (Home
Address or HIP Address) to mobile nodes, allowing
them to change their IP address as they traverse
different networks without breaking open service
sessions, and introduce special entities (Home Agent,
Rendezvous Server) for node mobility management,
e.g., location and tracking. Transport layer proposals
instead take a different approach, by introducing
explicit support for session handoff in the
communication protocols or routing service sessions
through mobile proxies deployed at the edge between
the wireless and wired portion of the network [7] [8].
All the above mentioned solutions require
modifications at the operating system level, thus
significantly hindering their adoption. Application layer
proposals, typically built on top of SIP [9], seem to be
more suited for the heterogeneous wireless Internet
environment.

The automatic best network selection problem has
also been intensively investigated recently. Some
proposals, such as [10], introduce at the mobile nodes a
component which monitors available network
attachment points and automatically takes advantage of
the best one. Other proposals, such as MUM [11], also
consider QoS- and context-awareness, and leverage on
mobile proxies to provide best available connectivity
for subscribed service sessions. However, this approach
requires a careful engineering of mobile proxies to
reach a satisfying level of performance, and poses
significant challenges for redeployment of proxies to
follow mobile nodes in their roaming, as proxies can
only migrate to preconfigured locations.

Finally, other research studies focus on the
migration of session endpoints. [12] and [13]
respectively build on top of SIP re-INVITE/REFER
functions and on an underlying P2P routing
infrastructure to implement session transfer. However,
these proposals only address the problem of session

handoff between different nodes but do not consider
the migration of session state as well. In addition, these
solutions are designed to support always-on nodes and
do not consider temporary network disconnections,
e.g., they do not provide mechanisms to temporarily
suspend sessions and to resume them later.

4, The Mockets Communication
Middleware
Mockets is a communication middleware

specifically designed to address the peculiar challenges
of mobile users in the wireless Internet [2] [3]. The
middleware provides applications with the mocket
abstraction. A mocket is an entity representing a mobile
communication endpoint, like a traditional BSD socket,
and can support both stream-oriented and message-
based communications.

Mockets is realized as an application level
middleware, as the middleware approach allows
overcoming the impedance mismatch between
applications and the network stack without sacrificing
portability. In fact, by introducing additional
intelligence at the application level, the middleware
solution supports applications with richer
communication semantics and network conditions
monitoring functions. At the same time, by building on
top of the Internet Protocol Suite, the middleware
approach also guarantees considerable portability as it
allows the deployment of distributed applications on all
platforms supporting a TCP/IP stack, regardless of the
underlying hardware and operating system.

The Mockets mobility support at the application
level is particularly convenient, as it does not require a
preinstalled infrastructure such as Mobile IP, Mobile
IPv6, and split-connection based solutions. In addition,
the end-to-end approach allows Mockets to combine
the benefits of transport layer mobility, e.g., low
handoff latency, with the benefits of application-layer
mobility, e.g., knowledge of mobility events and
security improvements.

Mockets is integrated with the Agile Computing
Infrastructure [14] to provide applications with
information about the current environment, e.g.,
changes in the set of neighboring nodes and available
resources and services, and with the KAoS policy
framework for realization of policy-based QoS
enforcement.

5. Mockets Session Mobility

Mockets is designed to support mobile service
sessions, in order to facilitate the design and

598

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 14:16 from IEEE Xplore. Restrictions apply.

deployment of novel distributed applications better
suited to mobile users in the wireless Internet. Central
to the support of mobile service sessions is the concept
of the mocket endpoint and its behaviour in presence of
mobility. First of all, a mocket endpoint can be
dynamically rebound to permit the preservation of end-
to-end connectivity in spite of node mobility. The
Mockets middleware can also automatically take
advantage of the best network connectivity at any time,
selecting the network attachment point and network
interface which represent the best connection to the
wireless Internet. Finally, Mockets supports migration
of session endpoints to different nodes.

5.1. Preservation of End-to-End Connectivity

Mockets preserves end-to-end connectivity of
service sessions in spite of terminal mobility. In
particular, Mockets detects changes in network
attachment point, and automatically performs rebinding
of session endpoints to the new network layer address.
In fact, Mockets-based service sessions have virtual
endpoints that can be dynamically rebound to different
network layer addresses. This feature of Mockets is
fundamental to permit applications to continue their
execution even in the presence of node mobility,
without forcing them to shut down and to reopen all
their network connections.

et us notice that session mobility introduces the
problem of locating devices when both endpoints
simultaneously perform a session handoff. In fact, in
this case both endpoints try to notify the change of
network layer address to the remote endpoint, but their
attempts may fail as they are sending messages to an
old (and possibly unreachable) network layer address.
Mockets provides mechanisms for session mobility, but
currently does not solve the above mentioned problem
by enabling the location and tracking of mobile session
endpoints.

5.2. Automatic Best Network Selection

In addition, the Mockets middleware can
dynamically and automatically provide best network
connectivity by rebinding the open sessions to the
network attachment point and network interfaces which
provide the best performance. Mockets can
continuously monitor the status of all network layer
addresses and network interfaces on mobile nodes and
select the best ones according to various heuristics. The
middleware then automatically rebinds the endpoints of
all opened sessions to the address and interface with
represent the best connection to the wireless Internet.

To this end, Mockets can exploit the information about
network interfaces, e.g., signal levels for wireless
interfaces, provided by the X ayer substrate [1].
At the moment, the automatic best network selection

feature of Mockets is still under development. In
particular, we are currently evaluating both simple
heuristics for session handoff decisions, such as the

azy ell Switching and Eager ell Switching
strategies adopted in most Mobile IP and Mobile IPv
implementations, and more sophisticated heuristics,
e.g., predictions on future availability of a particular
network attachment point based on monitoring of SSI
level of wireless network interfaces. In fact, handover
strategies can have a significant impact on the oS
provided to applications, e.g., in terms of available
bandwidth and or latency, and not every strategy might
be the best suited for every situation.

5.3. Endpoint Migration

Mockets also allows the migration of session
endpoints to a different node. More specifically, the
middleware permits applications to suspend an open
mocket and retrieve its state as an opaque object.
Applications can then request the Mockets middleware
to resume the previously suspended mocket by
providing the corresponding object. Applications can
also move the object representing the saved session
state to another node and resume the previously
suspended session from there.

The endpoint migration feature is fundamental for
the development of applications which enable users to
migrate all their subscribed services to a different node
while preserving service continuity. Mockets does not
currently automate the transfer of session and
application state to another node, but its support for
endpoint migration enables applications to easily
realize it.

Endpoint migration also has interesting applications
in mobile code systems. By taking advantage of
Mockets-based session endpoint migration, mobile
agent platforms could allow mobile agents to move to a
different location while carrying not only its current
context of execution but also its bindings with the local
environment, including all network connections. This
solution is currently being used in the = MADS
platform, which supports weak, strong and forced agent
mobility [].

inally, endpoint migration is very important in
Pervasive omputing, where servers could perform
transparent hand-overs to client applications as mobile
nodes roam, in order to provide contextual and
location-based service provisioning.

599

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 14:16 from IEEE Xplore. Restrictions apply.

5.4. Architecture for Mobility Support in
Mockets

The Mockets middleware has a modular architecture
and builds on top of the traditional T P IP protocol
suite. This design guidelines permit to achieve
portability, extendibility, ease of integration, and
facilitates the Mockets deployment in all available
platforms and scenarios, regardless of the underlying
hardware and operating system.

In the Mockets architecture, as depicted in igure 1,
the Session Manager (SM) is the component which
implements mobility of service sessions. SM is
composed of 3 modules: the and off Manager (M),
the Migration Manager (MM), and the o ordinator.

The andoff Manager module provides mechanisms
for session handoff. When requested to perform a
session handoff to another network layer address and o
network interface, M rebinds the local mocket
endpoint and triggers the transmission of handoff
notification to the peer endpoint by interacting with the
Datagram Transmitter and eceiver (DT) co mponent.

The Migration Manager module provides
mechanisms for endpoint migration. More specifically,
MM performs suspension and resumption of
connections, interacting with DT to carry out the
suspend esume protocol. MM also performs
serialization and deserialization of the mocket state,
providing applications with the opaque connection state
object as a result.

The oordinator module supervises and coordinates
the session management functions provided by M and
MM in order to realize session mobility. More
specifically, the oordinator enables endpoint
migration by processing application requests and
suspension requests from the peer endpoint, and
carrying them out leveraging the functions provided by
MM.

The oordinator also realizes preservation of end-
to-end connectivity and automatic best network
selection by leveraging information received from the

et work onditions Monitor (M) component. M
monitors network status, processes the collected
information and provides it both to oordinator and to
applications. In particular, M detects changes in the
network layer address of a device and detects peer
unreachability via a keep-alive mechanism. In addition,
the M component integrates with the X ayer
substrate, where available, to obtain cross-layer
information from network interfaces, e.g.,, signal
strength, reliability, network load, etc.

KAgS Policy

Framework

Application

| S

| | QoS Adaptation Message R
Controller Manager

™ gration |

Manager @ | }

% | Coordinator |

Y74 Handoff -]
/ Manager | 1

Datagram g —rreeemmmmmmmemmmgemem——
Transmitter r -
| and Receiver s Notviork Conditions Monitor

! T

Network Stack

Mockets

Figure 1. Architecture of Mockets

6. Mockets
Implementation

Session Manager

The Session Manager component manages service
sessions and enables their mobility. It is composed of
the oordinator, the M, and the MM modules. The

M module implements the mechanisms for supporting
session handoff, while the MM module mainly deals
with session suspend resune. The Session Manager
and its modules are developed as ++ components,
along with the rest of the Mockets middleware.
Mockets also supports applications written in Java and

viaJ I and Managed ++ wrappers. In the case of
Java, the Mocket class (that applications use as the
connection endpoint) implements the Serializable
interface, making it easy for applications to serialize
the connection endpoint for migration.

6.1. Session Handoff in the Handoff Manager

The M module contains the session handoff
mechanism that performs the rebinding of Mockets
service sessions endpoints to different network layer
addresses. When M receives a handoff request from
the oordinator, it informs the DT component to start
using the new network layer address for message
transmission reception. In order to minimize potential
message losses caused by the handoff, DT also keeps
listening for messages on the previous network layer
address, until a predetermined interval of time
(currently set to 2 * TT) is elapsed from the reception
of the first packet to the new network layer address.

M then requests DT to transmit an address
change notification to the peer session endpoint.
Address change notifications contain authentication
information that allows the peer endpoint to verify that
the message was not forged by using a secret key
exchanged at connection establishment time, thus

600

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 14:16 from IEEE Xplore. Restrictions apply.

preventing hijacking of open service session from
malicious entities. The notification is periodically
retransmitted until the first packet to the new network
layer address is received.

inally, let us notice that session handovers do not
cause any change in service session state. Applications
running on both the session endpoints can continue to
exchange messages. owever, handovers trigger the
reset and recalculation of some session-related
statistics, e.g., TT.

6.2. Session Suspend/Resume in the Migration
Manager

The MM module provides operations for session
suspend esume, to enable the suspension of a service
session, the retrieval of the state of suspended service
session, and the resumption of a previously suspended
session. In particular, Mockets provides applications
with three primitives: suspend which suspends a
currently working connection, getState which returns
the entire state of the session (including messages in
the transmission receival queues) as an opaque object,
and resume which reinstates a connection from its
previously serialized state.

The realization of mobile sessions, whose endpoint
can be migrated to another node, requires the
modification of session state machine. In particular,
new states must be introduced to support the
suspension and resumption of running sessions. igure
2 depicts the state machine of Mockets-based session.

pon receiving a session suspension request from
the application, the oordinator orders the MM
component to initiate the suspension procedure for the
current session. MM changes the session state from
ESTABISED to S SPE D_PE DI . The
session remains in the S SPE D_PE DI state
until all the messages in the transmission queue are
flushed or a timeout expires, according to the
application preference. MM then interacts with the
DT component to trigger the transmission of a
suspended session notification message and changes
the session state to S SPE D_SE T. pon receiving
a suspended session acknowledgement notification
from the peer endpoint, the suspension procedure is
complete and session state is changed to
S SPE DED.

Applications can then retrieve the state of the
suspended session. In this case, MM performs the
serialization of the entire state of the session, and
returns it to the application as an opaque object. It is up
to the application to transfer the suspended session
state to another node before resuming the session from

there. et us notice that serialization is a generic
feature that could be later extended to support other
needs, e.g., distributed checkpointing.

When the application calls resume, the oordinator
component creates a new session endpoint and then
orders MM to change the current session state to the
previously saved one. This triggers the transmission of
a session resumption notification to the peer endpoint,
which is periodically retransmitted until a timeout
occurs (similar to the timeout for connection
establishment).

~ Lose)
\SUSPENDMRECE!@/_\ Win
Suspend message Simultaneous
received Suspend message suspension challenge
received
Resume message Suspend message
received received

o e __ .

s L ~ -
(ESTABLISHED SUSPEND_PENDING SUSPEND_SENT
N ‘Application calis™~___ " Flushing =

suspend() completed

ResumeACK message SuspendACK message,
received received

— — TN
Q RESUME_SENT SUSPENDED >
N " Application calls e

resume()

Figure 2. State diagram for suspend/resume of
Mockets connections

n the other session endpoint, oordinator
processes messages related to session suspend resune.
pon receiving a session suspend notification, the
oordinator notifies the application that a suspension
request has been received from the peer endpoint and
orders MM to initiate a passive session suspension.
MM in turn changes the session state to
S SPE D_ E EIVED. The session remains in this
state until a session resume notification is received.

7. Experimental Evaluation

This section presents the first experimental results of
the Mockets support for session mobility. Testing the
overall performance of session migration in a
reproducible way is extremely difficult because of the
large number of parameters which contribute to its
determination (network conditions, size of message
transmission and reception queues at the session
endpoints, etc.), the dynamics of signaling involved in
endpoint migration, and the difficulty in isolating the
impact of the various contributions. or these reasons,
the measures of the performances in a real wireless

601

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 14:16 from IEEE Xplore. Restrictions apply.

networking environment are significantly influenced by
the particular topology and conditions of the test
network. As a result, we have decided to present here
the performance of the session suspend resune
mechanism, that is the key contribution to the overall
performance. These measurements are taken in a
reproducible and controlled laboratory environment.

We have performed the experiments in a testbed
composed of 2 Pentium III 900Mhz desktop P s with

12MB AM, running edora ore inux elease
(kernel version 2. .11). The P s are interconnected via
a 100 Mbps IEEE 802.3 wired network. Both P s run

IST et [1], a network emulator which can apply
several effects to the outgoing traffic flow in order to
reproduce the behavior d/namics of the wireless
Internet scenario. In particular, we have configured the

IST et instances to apply a round trip time delay
between the two P s and to enforce several levels of
packet loss rate in order to emulate a networking
environment with the highly unreliable communications
typical of the wireless Internet.

Table 1 shows the average time (out of 100
iterations) that it takes to complete the session
suspension and then resume it from the same node. The
proposed metric does not take into account the time to
retrieve the opaque object representing the suspended
session state. In fact, this last time depends on the
amount of data in the transmission and reception
queues, and is therefore extremely volatile and difficult
to retrieve in a reproducible fashion and in the context
of a realistic scenario.

otice that as the delay and the packet loss rate
increase, both the times to suspend and resume the
service session increase. This is because network delay
and packet loss disturb the notification messages
exchanged between the endpoints in the session
suspend esume procedure. Also note that the suspend
time is usually larger than the resume time, because the
Mocket endpoint waits to flush any data in the output
buffer before suspending the connection. This reduces
the size of the state information when migrating the
connection state from one node to another.

Although the code of the Mockets prototype used
for the tests is still in a development stage and has not
been optimized yet, the results of our tests seem
promising. In particular, they show that, even in
presence of significant packet loss, the time to suspend
and resume a Mockets-based service session is
comparable to IEEE 802.11b [17] and Mobile IP [18]
handoff times. Therefore, the process of migrating a
session endpoint can be reasonably fast, at the point
that users will not experience a significant loss of
service liveness in case of a session endpoint migration.

Table 1. Time to suspend and resume a
Mockets service session

Round Trip | Packet Average time | Average time
Time Delay loss rate for session | for session
suspension resumption
(ms) (ms)
No delay 0% 353 34
100 ms 0% 417 132
100 ms 10% 1023 385
100 ms 20% 1333 712
200 ms 0% 553 243
200 ms 10% 1197 464
200 ms 20% 2292 803

8. Conclusions and Future Work

The Mockets middleware has been designed
specifically to address the requirements of mobile users
in the new wireless Internet scenario. The Mockets
support for service session migration makes it possible
to preserve end-to-end connectivity in spite of node
mobility, to automatically exploit the best available
connectivity, and to migrate a service session endpoint
to another node.

We are planning to extend the Mockets middleware
in several directions. irst of all, we are working to
integrate components for location tracking of mobile
nodes sessions. In addition, we are already working on
enhanced heuristics for session handoff between
different networks (IP addresses) and or network
interfaces. The new heuristics should be integrated with
a policy system, allowing users to define policies and
algorithms for handoff strategies.

9. Acknowledgements

This work is supported in part by the .S. Army
esearch aboratory under oo perative Agreement
W911 -0 -2-0013, by the .S. Army esearch
aboratory under the ollaborative Technology
Alliance Program, ooperative Agreement DAADI19-
01-2-0009, by the Air orce esearch aboratory
under ooperative Agreement A87 0-0 -2-00 , and
by the Italian MI in the framework of the Project
‘M MA: a middleware approach to M bile
MultimodAl web services

10. References

[1] X. Fu, D. Hogrefe, D. Le, “A Review of Mobility
Support Paradigms for the Internet”, IEEE Communications
Surveys and Tutorials, Vol. 8, N. 1, pp. 38-51, 2006.

[2] M. Tortonesi, C. Stefanelli, N. Suri, M. Arguedas, M.
Breedy, “Mockets: A Novel Message-oriented

602

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 14:16 from IEEE Xplore. Restrictions apply.

Communication Middleware for the Wireless Internet”, in
Proceedings of International Conference on Wireless
Information Networks and Systems (WINSYS 2006),
Setlibal, Portugal, August 2006.

[3] C. Stefanelli, M. Tortonesi, M. Carvalho, N. Suri,
“Network Conditions Monitoring in the Mockets
Communications Framework”, in Proceedings of 26th
Military Communications Conference (MILCOM 2007),
Orlando, FL, USA, October 2007.

[4] N. Suri, J. Bradshaw, M. Breedy, P. Groth, G. Hill, R.
Jeffers, “Strong Mobility and Fine-Grained Resource Control
in NOMADS”, in: Proceedings of the 2nd International
Symposium on Agents Systems and Applications and the 4th
International Symposium on Mobile Agents (ASA/MA
2000), Springer-Verlag, 2000.

[5] N. Suri, M. Rebeschini, M. Arguedas, M. Carvalho, S.
Stabellini, M. Breedy, “Towards an Agile Computing
Approach to Dynamic and Adaptive Service-Oriented
Architectures” in Proc. of the IEEE Workshop on Autonomic
Communication and Network Management (ACNM'07).

[6] N. Banerjee, Wei Wu, S.K. Das, “Mobility support in
wireless Internet”, IEEE Wireless Communications, Vol. 10,
No. 5, Oct. 2003, pp. 54-61.

[7]1 M. Atiquzzaman, A. Reaz, “Survey and Classification of
Transport Layer Mobility Management Schemes" in
Proceedings of 16th Annual IEEE International Symposium
on Personal Indoor and Mobile Radio Communications,
September 11 - 14, 2005, Berlin, Germany.

[8] M. Bernaschi, F. Casadei, P. Tassotti, “SockMi: a
Solution for Migrating TCP/IP Connections”, in Proceedings
of 15th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP’07), 2007.
[9] N. Banerjee, A. Acharya, S. K. Das, “Seamless SIP-
Based Mobility for Multimedia Applications”, IEEE
Network, Vol. 20, No. 2, March/April 2006, pp. 6-13.

[10] S. Lahde, M. Doering, L.Wolf, “Dynamic transport layer
handover for heterogeneous communication environments”,
Computer Communications, Vol. 30, No. 17, November
2007, pp. 3232-3238.

[11] P. Bellavista, A. Corradi, L. Foschini, “Context-Aware
Handoff Middleware for Transparent Service Continuity in
Wireless Networks”, Elsevier Pervasive and Mobile
Computing Journal, Vol. 3, No. 4, pp. 439-466, Aug. - 2007
[12] K. Oberle, S. Wahl, A. Sitek, “Enhanced Methods for
SIP based Session Mobility in a Converged Network” in
Proceedings of Mobile and Wireless Communications
Summit 2007, 1-5 July 2007, pp. 1-5.

[13] T. Elsayed, M. Hussein, M. Youssef, T. Nadeem, A.
Youssef, L. Iftode, “ATP: autonomous transport protocol”,
in: Proceedings of the 46th IEEE International Midwest
Symposium on Circuits and Systems (MWSCAS '03), Vol. 1,
pp. 436- 439, 27-30 Dec. 2003.

[14] N. Suri, J. Bradshaw, M. Carvalho, T. Cowin, M.
Breedy, P. Groth, R. Saavedra, “Agile computing: bridging
the gap between grid computing and ad-hoc peer-to-peer
resource sharing”, in Proceedings of 3rd IEEE/ACM
International Symposium on Cluster Computing and the Grid
(CCGrid 2003), pp. 618-625, 12-15 May 2003.

[15] M. Carvalho, N. Suri, V. Shurbanov, E. Lloyd, “A
Cross-layer Network Substrate for the Battlefield”, in

Proceedings of the 25th Army Science Conference, Orlando,
FL, USA, 2006.

[16] M. Carson, D Santay. “NIST Net — A Linux-based
Network Emulation Tool”, ACM SIGCOMM Computer
Communication Review, Vol. 33, No. 3, 2003, pp. 111-126.
[17] H. Velayos, G. Karlsson, “Techniques to reduce the
IEEE 802.11b handoff time”, in Proceedings of IEEE
International Conference on Communications 2004, Vol. 7,
pp. 3844-3448, 20-24 June 2004.

[18] R. Hsieh, A. Seneviratne, “A Comparison of
Mechanisms for Improving Mobile IP Handoff Latency for
End-to-End TCP”, in Proceedings of the 9th annual
International Conference on Mobile Computing and
Networking, pp. 29-41, San Diego, CA, USA, 2003.

603

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 14:16 from IEEE Xplore. Restrictions apply.

