
 1 of 7

POLICY-BASED BANDWIDTH MANAGEMENT FOR TACTICAL NETWORKS WITH THE
AGILE COMPUTING MIDDLEWARE

Niranjan Suri1,2, Marco Carvalho1, James Lott1, Mauro Tortonesi3, Jeffrey M. Bradshaw1,
Mauro Arguedas1, and Maggie Breedy1

1Institute for Human & Machine Cognition

2Lancaster University
3University of Ferrara

{nsuri, mcarvalho,jlott,jbradshaw,marguedas,mbreedy}@ihmc.us; mtortonesi@ing.unife.it

ABSTRACT

Bandwidth allocation and enforcement in tactical
networks is a challenging problem. The mobile ad-hoc
wireless environment is bandwidth constrained and the
bandwidth required by applications running at any given
moment in time typically exceeds the bandwidth available.
In addition, both network topology and availability of
network resources vary rapidly in the mobile ad-hoc
scenario. Therefore, it is important to properly realize
allocation of bandwidth to the competing applications,
monitoring of both available and assigned network
resources, and the enforcement of constraints on channel
usage.

IHMC’s agile computing middleware and KAoS policy
and domain services components provide a resource
management platform that enables dynamic control of
application bandwidth utilization in a transparent
manner.

The agile computing middleware performs bandwidth
monitoring and enforcement. It builds on top of the
Mockets library for the realization of traditional
client/server application-level communications. The
middleware also integrates with the FlexFeed component
to provide applications with publish-subscribe
communications semantics and to support service-specific
instream data manipulation.

The KAoS policy and domain services handle policy
specification and distribution. KAoS policies can be used
to specify bandwidth limits based on hosts, port numbers,
and/or data flows.

INTRODUCTION

Communications in tactical military environments are
often constrained by low bandwidth due to the wireless
and ad-hoc nature of the networks. Applications often

require more bandwidth than available. Therefore, the
available bandwidth needs to be allocated to competing
application needs based on the priority of the tasks being
performed.

There is a need for a distributed resource management
system that allocates bandwidth to distributed applications
according to their priority and desired QoS levels. The
system should also enforce bandwidth constraints in order
to make sure that applications do not consume more
bandwidth than assigned.

In addition, the resource management system should
detect changes in network resource availability and trigger
a reallocation of bandwidth when needed. In fact, the
dynamic properties and behavior of mobile ad-hoc
networks result in a considerable fluctuation of the
available bandwidth on a continuous basis, which has a
significant impact on application behavior.

IHMC’s agile computing middleware [1] and KAoS
policy and domain services components work together to
address the challenges described above. The middleware
provides two libraries – Mockets and FlexFeed – that
handle the communication needs of applications. One of
the key goals for the middleware has been to transparently
handle bandwidth monitoring and enforcement without
requiring significant changes to the applications.

Mockets is a comprehensive communications library that
can be used by applications instead of other transport
protocols such as TCP and UDP [2] [3]. Mockets has been
optimized to operate on mobile ad-hoc networks and
provides several enhancements and a better abstraction to
improve the performance of applications.

FlexFeed is a publish-subscribe systems that handles data
feeds from providers (such as sensors) to clients [4] [5].
FlexFeed handles hierarchical data distribution to optimize
bandwidth utilization and dynamically transforms the data
instream to support policy enforcement. Unlike Mockets,

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 14:10 from IEEE Xplore. Restrictions apply.

 2 of 7

FlexFeed is data-aware, which allows it to operate on the
data in order to adapt to a dynamic environment. For
example, FlexFeed can dynamically downsample images
and video, change the compression ratio, or change the
update rate in order to adapt to changing network
conditions.

KAoS policy services can be used to express policies
governing the runtime behavior of the system [6] [7].
These policies are a combination of authorization policies
and obligation policies. The authorization policies allow
bandwidth to be allocated to the desired applications (or to
particular data flows). The obligation policies state
minimum requirements in terms of either bandwidth or
service levels to be expected from the application. A
monitoring component checks the system for compliance
with obligation policies and triggers a reallocation or a
notification to a human operator if necessary.

This paper is organized as follows. Section two presents a
scenario to motivate the need for bandwidth management
and the capabilities of the middleware. Section three
presents an overview of Mockets, FlexFeed, and KAoS.
Section four describes the bandwidth allocation,
enforcement, and monitoring mechanisms. Section five
presentsa few additional implementation details. Some
related work is discussed in section six, followed by
conclusions.

MOTIVATING SCENARIO

The motivating scenario for this paper is based on a
MOUT (Military Operations in Urban Terrain) exercise
that was part of the Warrior’s Edge initiative of the
Horizontal Fusion Portfolio’s Quantum Leap
demonstrations.

The scenario involves a number of dismounted soldiers
and robotic platforms operating together in an urban
setting. All the nodes are connected via a mobile ad-hoc
network, which carries network traffic for voice, video, as
well as a number of applications. The robots are equipped
with several sensors, including cameras that can transmit
live motion video to any subscriber. Sensors are also
embedded into the environment and integrated into the
soldier equipment. Various servers in the environment
provide services that are invoked by clients supporting
soldiers as well as personnel monitoring the operation at a
command center. Clients may request live motion video
from any of the camera sensors. Requests have different
priorities, based on the nature of the data, the person
performing the request, as well as the role of the requestor.
For example, the driver of a robot getting a video feed
from a camera on the robot is a higher priority than other

observers requesting video or other data. Moreover, there
are more stringent requirements on minimum service
levels (higher frame rate and resolution and lower latency
for video delivery) for robot operators who must drive the
robot effectively.

In this context, the goal of the research described in this
paper is to realize dynamic policy-based management of
bandwidth assignment between multiple competing
demands. One of the design guidelines of the proposed
solution is to separate policy management operations from
policy enforcement and network conditions monitoring.

The agile computing middleware enforces policies
transparently to the applications and users. It also keeps
track of the allocated resources and monitors network
conditions. In case the system is unable to comply with
the policy requirements, it notifies a human operator or
other system components about the failure condition so
that appropriate steps can be taken to modify the policies.

OVERVIEW OF MAJOR COMPONENTS

Mockets

Mockets (i.e., mobile sockets) is a novel communication
middleware, specifically designed to address the peculiar
challenges of mobile ad-hoc networking [2] [3]. Mockets
supports the mobility of communication endpoints, with
the goal of facilitating user/terminal/code mobility. In
addition, Mockets provides advanced communication
semantics which permit the realization of adaptive
applications capable to react to abrupt changes in network
conditions. Finally, the Mockets middleware offers an
application control and monitoring of the connection
status and network conditions.

Mockets adopts the traditional client/server programming
paradigm of sockets with additional features. For example,
it provides a message-oriented communication API with
advanced functionalities to manage endpoint mobility,
modulate the quality of service, and monitor network
conditions. Mockets also offers a second, stream-oriented
API compatible with TCP Sockets to facilitate the task of
porting legacy applications to the new middleware.
However, applications using the stream-oriented API will
not benefit from the advanced functionalities of Mockets.

One of the main goals of the Mockets middleware is the
support for device mobility. Therefore, one of the design
guidelines for the middleware is the notion of the mocket
as a communication endpoint that can move from one host
to another without interrupting the communication
session. The migration of a mocket connection is triggered

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 14:10 from IEEE Xplore. Restrictions apply.

 3 of 7

by an explicit application level event/command and is
completely transparent to the remote application. In
addition, the Mockets middleware can interact with the
underlying network layer to detect the migration of a host
to a different network locality. In this case, Mockets
performs the reconfiguration/rebinding of all the mockets
present in the host by notifying the remote endpoints
about the network layer address change. The ability of the
Mockets middleware to perform migration of connection
endpoints and network driven connection reconfiguration
is fundamental to permit applications to continue their
execution even in presence of device mobility. Without
this feature, applications would be forced to shut down
and reinstantiate all the opened network connections upon
host migration.

Mockets also proposes a novel programming model that
does not masquerade communication channel
characteristics but instead exposes network conditions to
applications. Researchers in several areas have identified
this capability as crucial for the development of robust and
scalable distributed applications that are able to adapt to
the varying network resource availability [8] [9]. Mockets
supports the development of adaptive applications by
providing them with both a wide range of message
delivery semantics and timely and precise information
about current network resources availability.

Mockets offers several message delivery services with
different communication semantics and allows
applications to choose the best suited one depending on
application logic, network conditions, and user
preferences. For instance, applications can choose any
combination of reliable/unreliable and sequenced/
unsequenced delivery and assign transmission priority and
information lifetime on a per message basis. The Mockets
library also supports the classification of messages into
different group types to permit applications to perform
group operations on specific type of messages. Typical
operations include enforcing a maximum transmission
bandwidth (as in this paper), assigning a specific lifetime
or a transmission priority value, or canceling/replacing a
group of enqueued messages. In addition, Mockets
permits fine-tuning the performance of applications by
setting the transmission priority and maximum lifetime
properties of messages.

Finally, the Mockets middleware monitors network
conditions and provides the gathered information up to the
application level. In this way, applications can operate
more informed decision on how to tailor services,
according to both service logic and user preferences.

Applications can either directly interrogate the Mockets
monitoring facility or request to be notified when a
specific event occurs by registering callback functions.
For instance, one of the events about which applications
may be notified is peer unreachability. This condition is
detected by a keep-alive mechanism that allows quick
discovery of problems at the link and network layers.

Historically, transport protocols have always been
designed to masquerade varying network conditions to
applications. Although the adoption of the subscribe-
notify paradigm is rather unusual in network
programming, the need for a richer model of interaction
between applications and transport protocols has begun to
emerge in other recent proposals [10] [11].

FlexFeed

FlexFeed is a publish/subscribe communications
framework for dynamic in-stream data processing in
mobile ad-hoc network environments under policy and
resource constraints [4] [5]. The framework uses mobile
agents as data-aware processing elements to better
customize multicast trees and allocate in-stream data
processing capabilities in the network. In-stream data
processing relies on taking advantage of the multi-hop
nature of network paths in ad-hoc networks to
appropriately allocate data processing elements for some
optimization criteria.

In the agile computing middleware, FlexFeed is the API
that application utilize for publish-subscribe oriented
communications. In the context of data-aware publish-
subscribe systems, it opportunistically allocates
computational resources in the network while taking into
consideration load, connectivity, and bandwidth
availability in order to minimize overall costs for data
processing and distribution of multiple concurrent data
feeds.

In order to provide decentralized mechanisms for high
level policy definition, deconfliction and distribution, the
FlexFeed framework has been integrated with KAoS
policy services as its default framework but other
approaches could be straightforwardly adapted. Upon
policy distribution, the FlexFeed framework is responsible
for providing on-demand deployment and activation of
policy enforcers.

In FlexFeed, policies can be used to regulate local (and
global) resource utilization of concurrent data feeds, as
well as to regulate the context-dependent release of
information between nodes. FlexFeed supports the
deployment of customized data filters at run-time that can

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 14:10 from IEEE Xplore. Restrictions apply.

 4 of 7

be used as data-aware policy enforcers for specialized data
types. For example, details of images being transmitted by
a particular camera sensor can be transparently
downgraded for clients not authorized to access the full
resolution video.

Policies can also be used to regulate and constrain the
autonomous behavior of the framework, providing bounds
for self-adjustments to operation tempo and to the
proactive manipulation of resources. For example, policies
can specify the conditions under which resources can be
used or moved in order to restore communication loss.

While other aspects of policy management are performed
by KAoS, the enforcement of policies is autonomously
handled by FlexFeed. The framework will
opportunistically allocate (and monitor) the necessary
resources for policy enforcement. When resources
available are insufficient for the policy requirements, the
framework reports the issue to the policy infrastructure,
requesting assistance.

KAoS

KAoS is a collection of componentized services
compatible with several popular agent and robotic
platforms as well as general-purpose grid computing,
CORBA, AFRL's Joint Battlespace Infosphere, and Web
Services environments. KAoS Domain Services provide
the capability for groups of software components, people,
resources, and other entities to be semantically described
and structured into organizations of domains and
subdomains to facilitate collaboration and external policy
administration. KAoS Policy Services allow for the
specification, management, conflict resolution, and
enforcement of policies within domains.

The KAoS policy ontology distinguishes between
authorizations (i.e., constraints that permit or forbid some
action) and obligations (i.e., constraints that require some
action to be performed when a state- or event-based
trigger occurs, or else serve to waive such a requirement).
Other policy constructs (e.g., delegation, role-based
authorization) are built out of the basic primitives of
domains plus these four policy types.

Ontologies are represented in OWL (Web Ontology
Language), which enables reasoning about the controlled
environment, policy relations and disclosure, policy
conflict detection, and harmonization, as well as about
domain structure and concepts exploiting description-
logic-based subsumption and instance classification
algorithms and, if necessary, controlled extensions to
description logic (e.g., role-value maps). No rules are used

in policy representation—rather conditions are expressed
as property restrictions on actions associated with the
policy ontologies.

Specialized ontologies may be loaded to fit a particular
application. For this application, an ontology was created
for Mockets, which defines the actions and properties
associated with Mocket communication. As an example,
the Mocket ontology defines an action
OpenMocketConnectionAction with properties such as
hostName, port, bandwidthLimit, dataflow, etc. In this
way, context-specific policies can be defined for a given
application.

The KAoS Policy Administration Tool (KPAT) is a GUI
which allows users to view and modify registered
domains, agents, and other entities, as well as to commit
new policies, and to modify or delete them. KPAT hides
much of the complexity of the OWL policy representation
from users. When a user commits a change to ontology
(e.g., a new or edited policy, changes to domain structure)
the Jena (http://www.hpl.hp.com/semweb/) toolkit is used
to dynamically build a OWL representation based on the
values selected by the user. To assist non-specialists in
defining sensible policies for a specific application, the
KAoS Policy Administration Tool (KPAT) supports both
a generic OWL policy editor, as well as policy templates
tailored to specific applications.

KAoS provides a simplified interface for application-
specific policy enforcement mechanisms to interact with
the policy services, which also insulates them from the
complexities of the OWL-based policy representation and
reasoning. An application can perform various policy
disclosure queries with KAoS to determine whether to
allow an intercepted action to occur, asking questions such
as “Is this action allowed?”, “What are the allowed values
for this property of a given action?”, and “What are the
obligations for the given action?”. Thus the application
developer does not need to be concerned with the details
of evaluating the applicability of policies, but can rather
focus on the implementation of the enforcement capability
itself. For example, the Mocket policy enforcement
mechanism asks queries such as “What is the allowed
value for bandwidthLimit for an
OpenMocketConnectionAction to hostA, port 80?”

KAoS relies on efficient and logically decidable
description logic based subsumption and classification
methods. This approach allows the policy disclosure
methods in KAoS to be optimized such that the response
to a query from an enforcer is provided on average in less
than 1 ms. Further details about the performance and
evaluation of KAoS can be found in [12].

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 14:10 from IEEE Xplore. Restrictions apply.

 5 of 7

BANDWIDTH ALLOCATION, ENFORCEMENT,

AND MONITORING

Figure 1 shows the interactions between the middleware
components. One or more administrators may use the
KAoS Policy Administration Tool (KPAT) to express
policies about the system. These policies are stored in the
distributed instances of the KAoS Directory Service.
While this component is shown as one unit in the diagram,
it may be replicated at several points in the network.

Each host contains a KAoS proxy component that caches
relevant policies locally. The FlexFeed and Mockets
components of the middleware interact only with the local
KAoS proxy components to query policies. For example,
if an application on a host attempts to use Mockets to open
a connection to another application, the Mockets library
queries the KAoS proxy to ensure that the communication
is authorized. The KAoS proxy also pushes policy
changes to Mockets and FlexFeed via a callback
mechanism.

Applications operating in the environment use either
Mockets or FlexFeed to handle their communications.
Publish-subscribe applications such as video clients and
video servers use FlexFeed. Applications that expect to
use a TCP or UDP style communication metaphor use
Mockets. Doing so allows the agile computing
middleware to obtain information about the
communication patterns in the environment – at the level
of hosts, applications (clients or servers) on hosts, and the
data flows between applications. The information obtained
includes the current bandwidth utilization, connection
attempts, connection failures, connection losses, and other
statistics such as packet loss, retransmissions, and queue
lengths.

Host

Application

Mockets

KAoS
Proxy

Host

KAoS
Directory
Service

KAoS
Policy

Administration
Tool

Host

Application

Mockets KAoS
Proxy

Application

Mockets KAoS
Proxy

Host

Video Server

FlexFeed

KAoS
Proxy

Host

Video Client

FlexFeed

KAoS
Proxy

Policy
Updates

Alerts

Figure 1: Middleware Components and Interactions

Another key requirement is transparent policy
enforcement. Once applications start using Mockets and
FlexFeed, no further changes are necessary to use KAoS
policies to control application behavior. Mockets supports
two different types of policies – an authorization or
negative authorization policy that allows or denies
connections between specified applications and an
authorization policy that allows a specified amount of
bandwidth to be used by a connection (or a type of data
flow within a connection).

FlexFeed supports three different types of policies – an
authorization or negative authorization policy allowing or
denying an application to subscribe to data being provided
by another application, and an obligation policy that
specifies minimum service levels for subscriptions.
FlexFeed supports additional policies that can constrain
the nature of the data flowing across subscriptions, but
those are discussed elsewhere [4] [5].

To support the type of scenario described earlier in the
paper, several different types of policies are used.
Authorization policies are first established to allow
communications between applications that need to
exchange information. Based on previously observed or
expected behavior, initial bandwidth limits are specified
for different applications. Finally, obligation policies are
used to specify minimum service levels for operators of
robotic platforms. We are working on mechanisms for
automated adjustment of policy [13].

At runtime, Mockets and FlexFeed constrain bandwidth
used by applications as specified in the initial policies.
Moreover, a monitoring component periodically checks
the obligation policies to make sure the system is still in
compliance. Available bandwidth fluctuates continuously
during runtime. Within reasonable limits, the middleware
automatically manages the allocation as the network
conditions change. However, drastic changes in the
situation or network may result in the middleware being
unable to comply with the demands being placed by the
applications. In such cases, the monitoring component will
detect that the system has failed to comply with one or
more obligation policies. This component triggers a
notification that is sent to the system manager or
administrator (who could be a person or an agent). This
entity can then change the initial allocation of bandwidth
by changing the policies in place. Once the new policies
are propagated to the KAoS Proxies, the FlexFeed and
Mocket components are notified about the policy changes.
This will result in the system behavior changing and
(hopefully) complying with the obligation policies.

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 14:10 from IEEE Xplore. Restrictions apply.

 6 of 7

IMPLEMENTATION DETAILS

Mockets transparently enforces policies placed on
connections. When an application attempts to connect to
another application, Mockets passes the source IP, source
port, destination IP, and destination port to the KAoS
Proxy to check if a connection is allowed. The application
accepting the connection also performs a similar check
and will only accept connections that are allowed. If a
connection is allowed, the KAoS Proxy will return the
maximum bandwidth that is applicable to the connection.
Any future changes to the allowed bandwidth are pushed
to the Mockets component through a listener interface
between Mockets and the KAoS Proxy, which allows the
bandwidth limits to be changed dynamically at any point
during the lifetime of the connection.

The transmitter component of Mockets then computes the
maximum number of bytes that can be written per 100 ms.
When the application sends data by calling the write()
method in Mockets, the transmitter will ensure that the
data sent out on the network is throttled to be below the
specified limit. For example, if the bandwidth limit is 20
KB/sec, the application is allowed to send 2 KB every 100
ms. Therefore, Mockets will ensure that no more than 2
KB is transmitted within each 100 ms interval. If an
application attempts to write more data, the application
thread will be temporarily put to sleep until the application
is allowed to send more data. The enforcement is
completely transparent to the application.

Data flowing through the network must be tagged into
different categories so that it can be differentiated by the
middleware. The applications, the data providers, and the
data consumers must also be known and visible to the
middleware.

RELATED WORK

Many proposals from both industry and academia for QoS
policy enforcement focus the adoption or extension of
available standards developed by IETF [14] [15].
However, these frameworks do not provide any
integration between the policy decision and enforcement
entities and the applications. In fact, they do not notify
applications in case of QoS policy changes, thus
effectively preventing them to react properly by
modulating their service level. Our approach goes beyond
the one described above, as the integration of the agile
computing middleware with KAoS allows both the
decoupling of policy operations (creation/modification/
decision/enforcement) and protocol/service logic, and the
notification of changes in the maximum available QoS to
applications.

Other proposals such as [16] advocate the realization of
policy-based QoS adaptation in the framework
transparently to applications, by dynamically changing the
communication protocols at runtime. However, this
approach takes full control of adaptation strategies away
from applications, and prevents them to modulate their
service levels according to service logic and user
preferences. The novel programming model proposed by
Mockets and KAoS, which realizes a tighter coupling
between applications and the underlying network, allows
the development of more robust and scalable distributed
applications that can better adapt to the dynamic and
heterogeneous deployment scenarios.

CONCLUSIONS

This paper has described policy-based bandwidth
management in the agile computing framework.
Applications operate on top of the Mockets and FlexFeed
communication libraries, which integrate with the
middleware. They provide information to the middleware
with respect to application communication needs and
patterns. The KAoS policy and domain services
framework is used to express policies regarding
bandwidth allocation among competing application needs
as well as minimum quality of service requirements for
applications. These policies drive the bandwidth allocation
in the middleware, which is enforced by the Mockets and
FlexFeed libraries. Monitoring components allow the
middleware to determine when obligation policies
defining QoS requirements are not satisfied, which results
in notifications to the administrator. In case of policy
changes, the new bandwidth allocations are propagated
back to the middleware, which changes the enforcement
accordingly.

AKNOWLEDGEMENTS

This work is supported in part by the U.S. Army Research
Laboratory under Cooperative Agreement W911NF-04-2-
0013, by the U.S. Army Research Laboratory under the
Collaborative Technology Alliance Program, Cooperative
Agreement DAAD19-01-2-0009, and by the Air Force
Research Laboratory under Cooperative Agreement
FA8750-06-2-0064.

REFERENCES

[1] Suri, N., Bradshaw, J.M., Carvalho, M., Cowin, T.,
Breedy, M., Groth, P., and Saavedra, R. Agile Computing:
Bridging the Gap between Grid Computing and Ad-hoc
Peer-to-Peer Resource Sharing. In Proceedings of the 3rd

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 14:10 from IEEE Xplore. Restrictions apply.

 7 of 7

IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGrid 2003).

[2] N. Suri, M. Tortonesi, M. Arguedas, M. Breedy, M.
Carvalho, R. Winkler, Mockets: A Comprehensive
Application-Level Communications Library, in
Proceedings of 24th Military Communications Conference
(MILCOM 2005), Atlantic City, NJ, USA, October 2005.

[3] M. Tortonesi, C. Stefanelli, N. Suri, M. Arguedas, M.
Breedy, Mockets: A Novel Message-oriented
Communication Middleware for the Wireless Internet, in
Proceedings of International Conference on Wireless
Information Networks and Systems (WINSYS 2006),
Setúbal, Portugal, August 2006.

[4] Carvalho, M. and Breedy, M. (2002) Supporting
Flexible Data Feeds in Dynamic Sensor Grids Through
Mobile Agents. In Proceedings of the 6th International
Conference in Mobile Agents (MA 2002) Agents,
Barcelona, Spain, October 2002.

[5] Carvalho, M., Suri, N., Arguedas, M. (2005) Mobile
Agent-based Communications Middleware for Data
Streaming in the Battlefield. To appear in Proceedings of
MILCOM 2005, October 2005, Atlantic City, New Jersey.

[6] Bradshaw, J. M., Uszok, A., Jeffers, R., Suri, N.,
Hayes, P., Burstein, M. H., Acquisti, A., Benyo, B.,
Breedy, M. R., Carvalho, M., Diller, D., Johnson, M.,
Kulkarni, S., Lott, J., Sierhuis, M., & Van Hoof, R.
(2003). Representation and reasoning for DAML-based
policy and domain services in KAoS and Nomads.
Proceedings of the Autonomous Agents and Multi-Agent
Systems Conference (AAMAS 2003), Melbourne,
Australia, New York, NY: ACM Press, pp. 835-842.

[7] Uszok, A., Bradshaw, J. M., Johnson, M., Jeffers, R.,
Tate, A., Dalton, J., & Aitken, S. (2004). "KAoS policy
management for semantic web services." IEEE Intelligent
Systems 19(4): 32-41.

[8] Chang, F., Karamcheti, V., 2001. A Framework
for Automatic Adaptation of Tunable Distributed
Applications, Cluster Computing, Vol. 4, N. 1, pp.
49-62, March 2001.

[9] Cheng, L., Marsic, I, 2002. Piecewise Network
Awareness Service for Wireless/Mobile Pervasive
Computing, Mobile Networks and Applications, Vol.
7, N. 4, pp. 269-278, August 2002.

[10] Gross, T., Steenkiste, P., Subhlok, J., 1999.
Adaptive Distributed Applications on Heterogeneous
Networks, in: Proceedings of the 8th Heterogeneous
Computing Workshop.

[11] Kim, M., and Noble, B., 2001. Mobile Network
Estimation in: Proceedings of the 7th annual
international conference on Mobile computing and
networking (MOBICOM 2001), Rome, Italy.

[12] Lott, J., Bradshaw, J. M., Uszok, A., & Jeffers, R.
(2004). Using KAoS policy and domain services within
Cougaar. Proceedings of the Open Cougaar Conference
2004. New York City, NY, 20 July, pp. 89-95.

[13] Bradshaw, J. M., Jung, H., Kulkarni, S., Johnson,
M., Feltovich, P., Allen, J., Bunch, L., Chambers, N.,
Galescu, L., Jeffers, R., Suri, N., Taysom, W., &
Uszok, A. (2005). Toward trustworthy adjustable
autonomy in KAoS. Trusting Agents for Trustworthy
Electronic Societies. R. Falcone. Berlin, Springer.

[14] H. Zheng, M. Greis, Ongoing research on QoS policy
control schemes in mobile networks, Mobile Networks and
Applications, Volume 9, Issue 3, Pages 235-242, June
2004.

[15] K. Phanse, Quality of Service (QoS) Policy
Framework.

[16] L. Rosa, A. Lopes, L. Rodrigues, Policy-Driven
Adaptation for Protocol Stacks. In Proceedings of the
IEEE Self-adaptability and self-management of context-
aware systems workshop (SELF), Santa Clara, CA, USA,
July 2006.

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 14:10 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

