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Abstract—With the advent of connected services ecosystems,
new generations of services and systems are being conceived,
responding to the ever growing demands of the market place. In
parallel, the effective adoption of the Cloud computing paradigm
is becoming an essential enabler for business enterprises. With
such importance placed on the services ecosystem, the design
and management of services becomes a key issue both for the
providers and the users. One of the main challenges for service
providers lies in the complexity of the services, comprising
of a multiplicity of technologies and competing and cooper-
ating providers, which is difficult to address through current
technology-centric service design approaches, in particular for
the deployment infrastructure. The work described in this
paper lays a foundation for business driven service design by
proposing a business goals driven model of resource allocation
in the Cloud. We define a goal/loss/processing cost function for
resource allocation that we optimize, while taking into account
the dynamic and varying nature of requests load.

Index Terms—Resource allocation, Cloud, business processes

I. INTRODUCTION

The technical foundations behind connected services, such
as the adoption of standards and a paradigm shift to virtualized
systems, are merely an instantiation, a point solution, to
satisfy the requirements laid out by overwhelming forces in
the business world to satisfy the competitive pressures that
come from a global economy with much faster business cycles
and broader outreach than in past years. Chief among these
technical forces are the heterogeneity and the distribution of
services, which are in many ways directly related to economic
and business environment factors (mergers and acquisitions,
divestitures, enterprise quickly moving into new business
areas). The days of a single vendor and a centralized environ-
ment as the predominant computing paradigm are numbered.
In a connected services paradigm the services are exposed and
consumed dynamically in accordance to agreements between
service participants, which involve business-focused perfor-
mance constraints.

The access to relatively inexpensive virtualized resources
and the availability of highly and seamlessly reconfigurable

options provide a compelling economic motivation for re-
deploying existing services on the Cloud to better suit con-
sumer needs. However, to take full advantage of the Cloud,
service providers need to consider redesigning services to
benefit from dynamic service placement. One of the most
compelling reasons for pursuing the transition to the Cloud
is the desire to create a competitive business advantage for an
organization. The rapid pace of new business needs, the needs
of making informed decisions more rapidly require an ability
to quantify and maximize a business value that is unattainable
in the current environment.

Deploying or migrating complex services to the Cloud is
always a very challenging task. Service providers have to deal
with complex IT architectures implementing multiple business
processes on top of a plethora of software components with
non-trivial dependencies and interactions [1].

Federated Cloud environments or, more in general, Cloud-
based solutions that span across several Cloud data centers
further exhacerbate these issues. In these environments, service
providers have the opportunity to deploy parts of their IT in-
frastructure to different Cloud data centers, in order to benefit
from competitive pricing or to reduce communication latencies
by deploying software components in (physical) proximity to
the customer’s location. However, while exploiting several data
centers, either from a single Cloud provider or from different
Cloud providers, can present interesting opportunities for the
service providers, it also significantly complicates the problem
of finding the most efficient architecture for Cloud services.

This paper presents a business driven model and a
simulation-based tool for the dynamic placement of complex
services in federated Clouds. The general approach is to get
a formal description of the resources necessary to satisfy the
stream of service requests and to apply resource cost and possi-
ble penalties for the SLO breaches to get goal/loss/processing
cost function, which we optimize to find the best resource
allocation. By considering the dynamic and periodic nature
of requests loads, our tool enables the predictive allocation of
service components and resources in federated Cloud environ-
ments.978-1-4799-0913-1/14/$31.00 c© 2014 IEEE



The rest of the paper is organized as follows: Section II
provides a motivating example of a business scenario. Section
III describes the problem settings and introduces the main no-
tations used in the paper. Section IV presents our algorithmic
work. Section V presents our developed framework and system
for business driven Cloud based service design. In Section
VI, we present our empirical studies. Section VII summarizes
the related work. Section VIII offers concluding remarks and
future work considerations.

II. COMPONENT PLACEMENT IN FEDERATED CLOUDS

Let us consider a Cloud IT service implementing the online
purchasing function for a very large enterprise customer with
a global presence. The service implements 3 different business
processes, respectively for purchasing an item, for browsing
all the items available for purchasing, and for searching for
a specific item. The business processes are depicted in Fig.
1. In the purchase business process, a customer request goes
through several software components: a Web server and an
Application Server that implement the Web interface and the
business logic of the service, a Financial Transaction Server
that deals with payment requests, and finally a Persistence
Storage that records purchasing information for accounting
and billing purposes. The other two business processes are
simpler, and both dealing with a single step after the request
visits the Web Server and the Application Server. 1

Even this relatively simple example is capable of high-
lighting the difficulties that emerge when deploying an IT
service in federated Cloud environments. First, each of the
software components that implement the IT service usually has
minimum performance requirements that result in constraints
on the types of Virtual Machines (VMs) that can be adopted
for their instantiation. For instance, Search Servers might
require generously sized VMs for their instantiation while Web
Servers might be able to run even on less powerful VMs.
Also, several less resource-hungry components could be co-
instantiated on a single VM. In addition, each component
usually needs multiple instantiations on a number of VMs
according to the request load of the corresponding business
processes. In fact, the type and number of service components
allocated to each data center, as well as the type of VMs used
for their instantiation, is likely to have a considerable impact
on the whole IT service performance. This is especially true
in case of shared software components, that are used for the
implementation of several business processes and that could
have a severe impact at the entire system level if not correctly
sized.

The elastic nature of Cloud computing also enables and sug-
gests to tailor the number of service components instantiated
according to the request workload generated by customers.
A dynamic service resizing function would allow service
providers to instantiate additional components to respond to

1In order not to unnecessarily complicate the illustrative example, we did
not consider caching, authentication, or syncronization between, e.g., different
persistence storage components in the business processes.

higher loads and to de-instantiate them when they are not
needed anymore in order to reduce VM bills.

Finally, the realization of complex Cloud services calls for
an accurate evaluation of IT costs. For the Cloud approach
to be cost efficient, there is the need to consider not only
IT performance metrics and VM bills, but also to evaluate
business-related Key Performance Indicators (KPIs) and their
full impact on the service provider’s business. In fact, while
IT service configuration that instantiate a large number of
redundant components might lead to high VM bills, configu-
rations with an excessively low number of components or with
components instantiated in underpowered VMs might lead to
Service Level Objective (SLO) violations that could result in
costly penalties for the service provider.

Service providers would significantly benefit from service
component placement optimization tools capable of exploring
the space of possible IT service configurations in federated
Cloud environments to find the best possible one, thus elim-
inating the need for difficult and time-consuming trial-and-
error optimization. The development of these tools, however,
is indeed very challenging, as it calls for a service model that
is general enough to consider all the main players in Cloud
computing providing and for advanced simulation-based what-
if scenario analysis approaches that are capable of dealing
with the the significant complexity of the problem domain.
Finally, since the customers request workload often follows
daily and weekly patterns that are relatively easy to predict
and to synthetically reproduce [2], there is the opportunity to
explore predictive approaches that are capable of anticipating
load changes and of suggesting new IT service configurations
that could better respond to the new demand levels.

III. MODEL DESCRIPTION

We decided to focus on the IaaS model for Cloud services,
and thus to consider the basic unit of resource allocation as
a VM. Cloud providers enable to instantiate several types
of VMs, that will typically differ for resource consumption
(CPU, storage, etc.) and cost. The model we are using covers
a number of the aspects connecting business processes, IT
services, IT resource consumption and IT resource costing
description.

First, we define components as software entities that run
inside a VM. Software components will typically have differ-
ent resource requests. Some components might run only on a
subset of the VM types available in the Cloud - the most
powerful ones. In addition, the performance of the service
component will depend from the size of the VM it is allocated
to.

We also assume that the basic unit of load on the data
center is a request for a workflow. Modeling workflows as
the sequence of service components that a request has to be
processed by in the corresponding business process enables to
consider complex services, to fully capture the relationships
between service components, and to measure the impact of a
component reallocation to a different data center on the whole
service performance.



Fig. 1. Purchase and Lookup BP

In order to develop a generically applicable model of IT
resources costing we analyzed the pricing schemes of several
Cloud providers and created a model able to handle most of
them. For instance, a portion of the pricing schemes for Google
and Amazon EC2 is shown in tables I II, and III [3] [4] [5].

We do not consider, instead, traffic related costs, as we
assume that service providers leveraging federated Cloud
architectures will configure their IT infrastructure to always
serve a customer’s requests from the closest data center. This
makes traffic costs an issue of lesser importance, that we plan
to address in future works.

TABLE I
GOOGLE VM INSTANCE TYPES AND PRICING.

Instance type Virtual Memory Local Price $/ Price $/Hour

Cores disk Hour US Europe

standard-4-d 4 15GB 1770GB $0.53 $0.58

standard-8-d 8 30GB 2x1770GB $1.06 $1.16

highmem-4-d 4 26GB 1770GB $0.61 $0.69

highmem-8-d 8 52GB 2x1770GB $1.22 $1.38

We assume that each customer’s request is fulfilled by a
business process, instantiated as an IT process. A (simplified)
business process is a Directed Acyclic Graph (DAG) consisting
of nodes corresponding to the components of the process, and
directed edges corresponding to either passing parameters or
data or messages. Note that although actual call graphs (see
Fig. 1) are not DAGs, we can always assume that each call

TABLE II
AMAZON VM INSTANCE TYPES.

Optimized Type Processor v CPU ECU RAM (GB) Storage (GB) Net-work

General m1.large 64-bit 2 4 7.5 2 x 420 Medium

General m1.xlarge 64-bit 4 8 15 4 x 420 High

Compute c1.medium 32/64 2 5 1.7 1 x 350 Medium

Compute c1.xlarge 64-bit 8 20 7 4 x 420 High

Memory m2.xlarge 64-bit 2 6.5 17.1 1 x 420 Medium

Memory m2.2xlarge 64-bit 4 13 34.2 1 x 850 Medium

Memory cr1.8xlarge 64-bit 32 88 244 2x120SSD 10 Gb/s

Storage hi1.4xlarge 64-bit 16 35 60.5 2xTB SSD 10 Gb/s

TABLE III
AMAZON VM PRICING.

Standard On-Demand Instances
US East (N. Virginia) EU (Ireland) Asia Pacific (Singapur)

Small (Default) $0.060 per Hour $0.065 per Hour $0.080 per Hour

Medium $0.120 per Hour $0.130 per Hour $0.160 per Hour

Large $0.240 per Hour $0.260 per Hour $0.320 per Hour

Extra Large $0.480 per Hour $0.520 per Hour $0.640 per Hour

Second Generation Standard On-Demand Instances

Extra Large $0.500 per Hour $0.550 per Hour $0.700 per Hour

Double Extra Large $1.000 per Hour $1.100 per Hour $1.400 per Hour

returns result of the call and some error code, what make call
graph close by properties to DAGs.

One or many edges vij may start from a node ni and end
in the node nj . That means that data produced by the node is
multiplied and split between nodes nj accepting edges. One
or many edges vij may end in a node nj . We assume in
this case that data is either joined (all edges should provide
data) or merged (at least one edge must provide data). More
advanced business process models are described by the BPEL
[6] industry standard, but for our purpose this simplified model
represents a good approximation of a business process.

A. IT costing model

We suppose that the main available resources are in the form
of VMs that have CPUs, RAM, storage. An additional resource
that have impact on the Business value is networking. VMs
have predefined types that depend from the specific Cloud
provider, say standard-8-d in Table I. Each VM has a location
(possibly distributed over multiple datacenters all over the
world) and price of the VM may depend on it.

Processing begins from some initial state-placement of the
components. This allows us to run application in cyclic or
online manner. Load monitor monitors current load and time
since last recalculation, and, when predicted or actual level
require, load monitor initiates recalculation of VM placement.
This in turn may initiate modification of placement.

We assume that copies of all components will be preloaded
in a few versions of VMs. So, in order to be placed, VM some-
times should be copied in appropriate location and started.
Note that boot time of a VM is typically low, thus allowing
us fast change of a placement.

The goal (or loss) function that we consider is a sum of
the required resources costs and cost associated with SLO
breaches. The main components of the goal function are:



• Cost of the placement (or deployment) of the required
components,

• Cost of the relocating some of the components,
• Cost of the SLO breaches.
Overall load on the model is created by randomly generating

a few possible customer requests that are emulated by different
workflows. For examples of the workflows see Fig. 1.

A number of papers considered statistical models for load
generation, we give a short overview of the load generation
modeling papers in section VII.

Each type component has a threshold for a number of
requests, possibly dependent on type of VM. If number of
requests to the component exceeds threshold then respond time
for those requests exceeds time specified by SLO. If number of
such requests is significant (say exceeds 2% of total number
of requests), then we observe SLO breach with consequent
penalty from customer. In order to prevent SLO breaches, new
components are allocated upon demand.

We now consider each part of the goal function separately.

B. IT resource model and consumption

We consider a number of different types of load in math-
ematical model; for the experimentation purpose we restrict
ourselves to 3 types of load. Load is regulated by requests,
with number of requests varying leading to different levels of
loads. The high CPU and memory, low storage and networking
type could model calculation components. The low CPU and
memory, low storage and high networking type could model
Web server components. The high CPU and memory, high
storage and networking type could model database compo-
nents.

We assume that each VM is characterized by n0 types of
resources rkn, and there are n1 types of VMs Vk with k =
1, .., n1, each type of VM has its size of available resources.

Example 1: The Amazon pricing table III shows 4 types
of resources, CPU, RAM, Storage and Network capabilities.
Based on different resource configurations the table shows 8
different types of VM instances.

A number of constraints in the original optimization prob-
lem are related to IT resources. Each workflow component
should be executed on one VM, and this VM instance should
have sufficient amount of resources. If Tji is the i-th compo-
nent of the j-th type of service request, and it requires rjin
amount or size of the n-th resource, then for the k-th type of
VM instance to be able to instantiate the component it requires
the following constrain to be satisfied

rkn ≥ rijn. (1)

C. SLO model

We consider an SLO model which is well integrated with the
rest of the framework. When the number of service requests
that are not fulfilled in the predefined time exceeds certain
threshold, service provider pays a fine.

Example 2: If percent of service requests executed in more
that 10 seconds exceeds 1 percent, Then Service Provider pays
a fine (or reduces service charge) of 5000$

Thus SLO loss may be expressed as a characteristic function
of the set ratio ≥ tijk χ[r,∞)(ratio of requests over threshold),
where the threshold tijk depends on component i, request j
and VM type k.

D. Formulation of the optimization problem

The problem of finding the optimal next placement may be
formulated as follows:

y∗ = argmin
y∈P

C(y, y0, tt)

subject to rkn ≥ rijn,
(2)

for all i = 1 . . .m, k = 1 . . . , n = 1 . . ., where {P} is a set
of all possible placements, y0 is given initial placement tt is
the parameter describing requests (including predicted) with
possible SLO breach for the next period.

The cost function C(y, y0, tt) = C1(y) + C2(y, y0) +
C3(y, tt) is represented as a sum of cost of placement y, cost
C2(y, y0) of re-placement from placement y0 to placement y,
and expected SLO cost C3(y, tt).

IV. ALGORITHMS

For the service component placement optimization, we have
adopted a 2-phase metaheuristics that explores the space of
possible configurations to find the best performing one.

More specifically, the metaheuristics implements an outer
phase that takes care of assigning service components to Cloud
data centers, using a genetic algorithm, and an inner phase
that takes care of choosing which VM types should be used
to host each of the service components, using a random search
strategy.

The design of the metaheuristics that we adopted is inspired
to memetic algorithms, a common form of metaheuristics,
based on the decomposition of the search procedure in a global
(or explorative) and a local (or exploitative) part, and on the
adoption of different strategies for each of them [7].

A. Assigning service components to Cloud data centers

The global search part of the metaheuristics takes care
of assigning service component to each data center. This
represents a search on a very large vector space, i.e., a subset
of DC , where D is the number of different data centers and C
the number of components of the different service types that
we consider.

In addition to the large search space, the optimization
problem has to deal with a complex objective function, which
is likely to be ”jagged” and not differentiable. This means
that we cannot adopt traditional techniques, such as gradient-
descent based ones, that are not well suited for this task.
Instead, there is the need to consider metaheuristics.

In particular, we have chosen to use a genetic algorithm for
the global search procedure. Genetic algorithms are a family of
population-based metaheuristics that iteratively refine a pool
of candidate solutions to find the best suited one, borrowing
concepts and techniques from natural evolution theory, such as
fitness to the environment, selection, and inheritance, mutation,
and recombination of genetic material [7].



Genetic algorithms have several advantages that make them
particularly well suited for this kind of problems. In fact,
they are a robust metaheuristics that can be adopted for the
optimization of challenging objective functions. In addition,
genetic algorithms lend themselves well for the integration
with other metaheuristics to realize memetic algorithms, and
can be tuned to favor exploration or exploitation parts of
the search process [8]. Finally, population-based metaheuris-
tics are (relatively) easily parallelizable, thus enabling (and
suggesting) the adoption of in Cloud architectures for their
implementation.

Algorithm 1 presents the global search procedure based
on genetic algorithms that we have adopted. Our particular
genetic algorithm implementation is based on a integer vector
representation for the genotype (the position in the search
space that in the genetic algorithms metaphor represents the
genetic material of a specific individual), on binary tour-
nament selection, intermediate recombination, and random
geometrically-distributed mutations. Notice that the actual
fitness evaluation, performed in line 7, is demanded to the
local search procedure.

Algorithm 1 Find optimal service placement
1: procedure OPTIM(conf )
2: P ← random population(conf)
3: generation← 0
4: repeat
5: generation← generation+ 1
6: for all p in P do
7: p← find best vm mapping(p)
8: end for
9: Pnext ← ∅

10: for i← 1, population size/2 do
11: p1 ← binary tournament(P )
12: p2 ← binary tournament(P )
13: c1, c2 ← integer recombination(p1, p2)
14: Pnext ← Pnext ∪ geometric mutation(c1)
15: Pnext ← Pnext ∪ geometric mutation(c2)
16: end for
17: P ← Pnext

18: until generation ≥ max generations
19: return fittest element(P )
20: end procedure

B. Instantiating service components

The local search procedure takes care of deciding which
VM types to use for the instantiation of service components
within each Cloud data center.

When attempting to map a service component to a VM type,
the first thing that the procedure does is to select the VM types
that satisfy the resource constraints expressed in equation 1. To
this end, it analyzes the metadata that describes the requisites
of each service component.

Once the the allowed VMs are known, we can start the
local search to find which VM types are the best suited to

host service component.
This is effectively a search over a combinatorial space of

size:

C∏
c=1

a(c)
∑D

d=1 b(c,d) (3)

where a(c) is the function returning the types of VMs allowed
for the instantiation of component c and b(c, d) is the function
returning the number of VMs to instantiate for a given
component c and data center d couple.

To reduce the problem complexity, we have chosen to adopt
a simplified VM allocation algorithm. More specifically, we
decided to enforce a (truncated) discrete exponential distribu-
tion for the set of VM types to instantiate for each component.
The allocation of VMs is performed according to the exponent
parameter αt (where αt ∈ R>0), which represents the ”aggres-
siveness” in allocating service components of type t to VMs of
larger size. This means that, to instantiate components of type
t, the algorithm will allocate αt more VMs of size s than those
of size s−1. In fact, the lower αt is, the more the distribution
will be skewed towards larger size VMs. This assumption
effectively transforms the search space from a combinatorial
space to the more convenient RC

>0.
We decided to adopt a random search procedure in the space

of possible VMs, as presented in algorithm 2. While random
search is a relatively unsophisticated heuristics, we chose it for
its robustness in dealing with ”jagged” objective functions.

Algorithm 3 presents the pseudo-code for our VM allocation
procedure, and figure 2 shows an example allocation of 100
VMs of a given component type with different values for the
aggressiveness parameter αt.

Algorithm 2 Find best VM mapping
1: procedure FIND BEST VM MAPPING(p)
2: attempt← 0
3: p.vms← allocate vms(p.components)
4: p.fitness← evaluate fitness(p)
5: repeat
6: attempt← attempt+ 1
7: q ← p
8: for all c in q.components do
9: c.α← random(0.0, 1.0)

10: end for
11: q.vms← allocate vms(q.components)
12: q.fitness← evaluate fitness(q)
13: if q.fitness > p.fitness then
14: p.vms← q.vms
15: end if
16: until attempt ≥ max attempts
17: return p
18: end procedure

V. ARCHITECTURE AND IMPLEMENTATION

We realized a prototype implementation of the framework
discussed in the previous Sections. Our prototype enables



Algorithm 3 Allocate VMs
1: procedure ALLOCATE VMS(components)
2: vms← []
3: for all c in components do
4: . avt and v are ordered by decreasing VM size
5: avts← allowed vm types(c.type)
6: v ← []
7: for i← 1, size(avts) do
8: v[i]← c.αi−1

9: end for
10: v ∗ c.to allocate/sum(v) . normalize v
11: vms.append(v)
12: end for
13: return vms
14: end procedure

Fig. 2. Allocation of 100 VMs with different values for the aggressiveness
parameter αt

business manager to provide a full description of the Cloud
service that they want to optimize. It then reenacts the Cloud
service with different configurations through a series of what-
if scenario simulations, returning the configuration with the
lowest cost.

The prototype architecture is depicted in Fig. 3. The Cloud
Service Configuration component is in charge of process-
ing the description of the IT service provided by business
managers and of using this information to coordinate the
other components of the framework in the reenactment and
optimization processes.

The configuration provided by the business manager in-
cludes all the information needed to reenact the IT service
and evaluate the business performance of many possible con-
figurations. More specifically, the configuration describes the

business processes that the Cloud service implements (defined
through a BPEL-inspired language), the service components
used for the business processes’ implementation (with their re-
spective minimum hardware requirements and average service
times), the data centers that can be used for the placement
of service components (with their VM pricing model), the
customer request generation model, and finally the business
impact model to consider for the evaluation of each IT
service configuration (i.e., the target function to optimize).
This configuration model was designed to enable the prototype
to consider a very large class of Cloud services offered on top
of major Cloud providers, such as Google and Amazon.

The Optimization component is in charge of exploring the
space of possible configurations for the IT service. To this
end, the Optimization component leverages the algorithms
described in the the previous Section.

The Simulator component is in charge of reenacting the IT
service with the particular configuration selected by the Opti-
mization component. This component implements a discrete-
event simulator that reenacts each VM as a queue. Incoming
requests are added at the end of the queue and handled
according to the queue management policy (FIFO, priority-
based, etc.). The use of multiple servers and/or of non-trivial
request management strategies enables this model to reenact
a wide range of real-life service components with reasonable
accuracy.

Finally, the Business Impact Analysis component is in
charge of evaluating the cost, i.e., the business impact, of each
configuration. To this end, it calculates the costs related to VM
pricing and analyzes the KPIs provided by the Simulator com-
ponent to evaluate whether SLO violation penalties should be
applied. The result is returned to the Optimization component.

We realized the prototype in the Ruby programming
language. More specifically, we adopted the JRuby plat-
form (http://jruby.org), a Ruby virtual machine implemented
in Java, for its excellent support for concurrent program-
ming and its capability to interface with high quality Java-
based scientific libraries, such as Apache Commons Math
(http://commons.apache.org/math/).

Fig. 3. Architecture of the prototype



VI. EXPERIMENTATION AND CASE STUDIES

We experimentally tested our prototype by reenacting the
deployment of the Cloud service example illustrated in Section
II. More specifically, we considered the optimization of an
enterprise-class installation of the service, serving up to 10
million requests per hour to a single enterprise customer with
presence in 3 different continents: Europe, (North) America,
and Asia. In order to minimize communications-related laten-
cies in service delivery, we assumed that the requests from
each division would be served from a Cloud data center in the
same continent. To this end, we consider the deployment of
components in the Amazon EC Cloud data centers in Ireland,
(Northern) Virginia, and Singapore.

We assumed that each division in the customer organization
makes a different use of the Cloud service, with the US
division being responsible for 50%, the EU division for 30%,
and the Asia division for 20% of the total number of requests.
We also assumed different usage profiles for each division,
with the EU division’s request distribution for workflows A-
C being 30%, 60%, and 10%, the US division’s being 45%,
45%, and 10%, and the Asia division’s being 50%, 30%, and
20%.

In addition, in the attempt to reproduce realistic customer
service requests dynamics, we considered a workload that
changes dynamically according to daily pattern. Fig. 4 shows
the daily trend in the request loads from the different divisions
as well as the aggregated one.

We adopted a stochastic model based on non-homogeneous
Poisson processes to reenact the customer service requests
arrival process. While some real-life service requests pat-
terns might require more sophisticated models [9], non-
homogeneous Poisson processes represents a good tradeoff
between model accuracy and model complexity [2].

Fig. 4. Load of requests

We also limited the number of VM types considered to
General purpose VMs from m1.small to m1.xlarge [4]. We
assumed no requirement for the Web Service component
(thus enabling it to run on any type of VM), a 2GB RAM

minimum requirement for the Application Server and Search
Server components (thus preventing them from running on
m1.small VMs), and a minimum requirement of 2 CPUs
for the Persistence Storage and Financial Transaction Server
components (thus enabling them to run only on m1.large or
m1.xlarge VMs). For the reenactment of each VM we used
G/M/1 FIFO queues, with exponentially distributed service
times with a mean that depended from the specific type of
VM type and the software component that it instantiates.

In the experiments, we considered only shared components.
This means that, after each step in a workflow, the next VM to
which the request will be forwarded will be randomly selected
from all the VMs instantiating the software component type
specified in the next step of the workflow.

Finally, to keep the IT costing model relatively simple, we
only considered on-demand VMs, that have a fixed and per-
use pricing. For the penalties model we considered a 500 $
penalty for every percentage point of requests with a time to
resolution higher than 2 seconds.

In order to test the prototype effectiveness for predictive
optimization, we decided to test how it responds to the greatest
difference in request load, the one between UTC+12 and
UTC+13 (+1,450,000 requests per hour). We ran a first exper-
iment at the UTC+12 time. The best configuration returned by
the prototype had an associated total cost of 12,220.92 $/day
and is shown in Fig. 5. We then ran a second experiment
at the UTC+13 time. The best configuration we achieved for
UTC+12 was not very well suited to handle the increased
load, returning a cost of 17,220.92 $/day, significantly higher
than the one exhibited at UTC+12 because of heavy SLO
violation penalties. Instead, the best configuration returned
by the prototype, shown in Fig. 6, was capable of finding
a significantly better configuration with a cost of 15,656.52
$/day, which represent a saving of 9.1%.

For each experiment, we used a population of 64 individuals
for the genetic algorithm and 4 iterations for the local search
procedure, terminating the evaluation after 5 generations.
This effectively means that 1280 different configurations were
evaluated for each experiment. We chose these values because,
after several experiments, we empirically determined that they
represented a reasonable trade off between exploration of the
search space and computational resource utilization. Using
those parameters we were capable of running each of the
experiments in roughly 3 hours on a 2011 laptop equipped
with 8GB RAM and a quad-core second generation Intel i7
processor and running a 64-bit version of Arch Linux (kernel
3.10.5).

VII. RELATED WORK

It is possible to envisage a large number of applications
for the optimal placement of IT service provider processes in
the Cloud from the business point of view. It may be used
to identify possible values of the SLA penalty for different
levels of the quality of service agreement breaches. It may be
also used to identify the minimum possible cost of hosting for
the Cloud provider. In this paper we consider application of



Fig. 5. Optimal component and VM allocation at UTC+12.

Fig. 6. Optimal component and VM allocation at UTC+13.

optimal placement to the deployment of IT service provider
processes, a problem which is known to be NP hard [10].

One of the first application of the business optimal resource
placement is due to Menasce et al. [11], who used simulation
to identify possible QoS levels and SLA penalties costs for
the distributed resource allocations. A nice approach was sug-
gested in [10] where queuing theory was used to obtain exact
an mathematical solution for the gain optimization problem
under restrictions on incoming service requests, simplified IT

process, etc. The restrictions of the above work were partially
lifted in [12], where in addition placement of the multi-tiered
system were analyzed.

Some researchers, including two authors of this paper,
adopted discrete utility functions and heuristics to solve the
placement problem. A continuous utility function was con-
sidered in [13] and an iterative approach to finding optimal
placement was suggested. An approach based on approxima-
tion with good theoretical guaranties of closeness to optimal
solution is suggested in [14]. An interesting approach based
on fuzzy logic and control theory to the multi-tier placement
problem was suggested in [15]. An approach to optimization
based on minimizing energy usage is suggested in [16], see
also [17], [18].

Cloud computing advantages from multiple (business, tech-
nical, maintenance) point of views are considered in [19] and
[20]. Additional details may be found in the monograph [21].

Statistical modeling of the Cloud load is considered in
[22] and [23]. We use non-homogeneous Poisson processes
to model burstiness of the Cloud load, extending [2].

Another interesting avenue of research recently emerging
involves the optimization of component placement in Clouds
from the perspective of [24] [25]. These studies optimize com-
ponent placement from the point of view of Cloud providers
instead of the service provider one.

Finally, business driven service component optimization in
federated Clouds through genetic algorithm optimization was
originally proposed in [26]. This paper significantly extends
that work to consider a resource definition and usage model,
complex workflows, a more realistic workload model, and a 2-
phase optimization metaheuristics that splits the optimization
process in the service component placement and VM alloca-
tion subproblems.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presents a framework for business driven ap-
proach to a placement of complex services in federated Clouds.
For modeling complex services, we assume that the basic unit
of load on the data center is a request for a workflow and
covers a number of the aspects connecting business processes,
IT services, IT resource consumption and IT resource costing
description. Modeling IT resource costing is demonstrated by
considering a number of Cloud providers and including cost
of the placement (or deployment) of the required components,
cost of the relocating some of the components and the cost of
the SLO breaches.

We are planning to extend our model to consider also dy-
namic changes in service configuration, e.g., to take advantage
of Cloud bursting to respond to high peeks in the request
load. In addition we are planning to experiment with more
sophisticated metaheuristics for the optimization of service
components and VMs and to investigate a cost model for
VM migrations, both within a single data center and across
different data centers.
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