
Middleware-level QoS Differentiation in the Wireless Internet:

the ubiQoS solution for Audio Streaming over Bluetooth

Paolo Bellavista

Dip. Elettronica, Informatica e Sistemistica

Università di Bologna

pbellavista@deis.unibo.it

Cesare Stefanelli, Mauro Tortonesi

Dipartimento di Ingegneria

Università di Ferrara

{cstefanelli, mtortonesi}@ing.unife.it

Abstract

The ultimate goal of mobile and ubiquitous Internet ac-

cessibility is not only the seamless integration of wire-

less devices with traditional fixed networks but also the

dynamic differentiation of Quality of Service (QoS) lev-

els depending on client characteristics. In this context,

the paper presents the provisioning of audio streaming

with different QoS levels in the application-level ubiQoS

middleware. In particular, it focuses on how ubiQoS

manages the QoS over the last segment of the audio dis-

tribution path towards Bluetooth clients by allocating

different types of Bluetooth communication channels

(unicast connection-oriented or broadcast connec-

tionless) depending on the differentiated QoS require-

ments of different user classes. To this purpose, we have

developed a library that extends the JSR82 standard

with the support of Active Slave Broadcast, thus simpli-

fying the Java-based management of Bluetooth commu-

nications. The reported experimental results show the

feasibility of our application-level middleware approach

in the challenging case of audio streaming with differen-

tiated QoS to resource-limited Bluetooth devices.

1. Introduction

The expanding market of wireless-enabled portable

appliances pushes towards the realization of spontaneous

networks of devices located within the range of a single

user. These spontaneous networks are often identified as

Personal Area Networks (PANs) [1]. There is a growing

and growing commercial interest in enabling PANs to

seamlessly integrate with the fixed Internet. In the fol-

lowing, we will use the term wireless Internet to refer to

the above deployment scenario where PANs work as the

“last-meter” connectivity solution that extends the tradi-

tional Internet infrastructure [2].

A primary issue of the wireless Internet scenario is the

wide heterogeneity of the hardware/software capabilities

of access devices, e.g., screen size and resolution, oper-

ating systems, and supported multimedia formats [3, 4].

This heterogeneity makes almost impossible to provide

statically tailored versions of Internet services to all the

possible categories of access terminals. In addition, port-

able terminals usually have limited resources in terms of

processing, memory, storage, and network connectivity.

Resource-consuming services designed for the fixed

network, such as multimedia streaming, requires being

downscaled to suit the specific characteristics of the

served limited clients.

In the wireless Internet, Bluetooth is emerging as the

de-facto standard communication technology for the re-

alization of PANs [1]. Bluetooth-enabled portable de-

vices can interconnect to form a particular incarnation of

PAN called piconet, which consists of one master and up

to 7 slaves. The master device has direct visibility of all

slaves in its piconet and can handle two different types

of packet-oriented traffic, with differentiated Quality of

Service (QoS) levels: unicast Connection-Oriented (CO)

traffic over Asynchronous Connection-Less (ACL) links

with best-effort QoS support and broadcast connec-

tionless traffic over Active Slave Broadcast (ASB) links

with no QoS support. In addition, Bluetooth provides

circuit-oriented Synchronous Connection Oriented

(SCO) links, designed to support time-bound transmis-

sions, e.g., voice communication. Depending on ser-

vice/user QoS requirements, streaming services to Blue-

tooth devices should be capable of choosing the most

suitable type of available channels, even by considering

the already accepted service requests.

The paper presents a middleware solution, called

ubiQoS, for the QoS management of mobile multimedia

services to portable devices in the wireless Internet. The

application-level ubiQoS approach facilitates the appli-

cation-specific tailoring and adaptation of multimedia

flows, the differentiation of QoS levels depending on

Proceedings of the First International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks (QSHINE’04)

0-7695-2233-5/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 13:52 from IEEE Xplore. Restrictions apply.

profiles of user requirements and of device characteris-

tics, and the dynamic un/installation of middle-

ware/service components, when and where needed [5, 6].

The paper specifically focuses on how ubiQoS supports

audio streaming with differentiated QoS over the last-

meter Bluetooth channels towards portable client de-

vices. The main guideline is to exploit support proxies

located at the edges between the fixed Internet and the

Bluetooth PANs. Proxies work as masters in the Blue-

tooth piconets of access devices: they choose the most

suitable Bluetooth channels for communicating to the

target clients depending on the already accepted service

requests and on client profiles, possibly by downscaling

the served audio streams at provision time. ubiQoS prox-

ies are implemented in terms of mobile agents, i.e., ac-

tive entities that can migrate from node to node during

their execution by carrying their code and by preserving

their reached execution state. Agent mobility facilitates

the deployment of ubiQoS components in the proximity

of wireless access localities only when required, depend-

ing on the client positions and movements at runtime.

To achieve ubiQoS portability over the open wireless

Internet, we have designed and implemented a Java-

based interface, called JSR82ext in the following, to

have full control of Bluetooth channels from within the

standard Java Virtual Machine (JVM). JSR82ext has

been originally developed within the ubiQoS project and

significantly extends the standard Java APIs for Blue-

tooth (JSR82): i) JSR82ext adds the support for ASB

links, which are fundamental for efficient broadcast dis-

tribution of the same audio flow within a piconet; ii) it

enriches the open source JavaBluetooth stack (with its

current limitations to the support of only serial adapters

[7]) to fully support JSR82-based ACL management on a

wide range of Bluetooth adapters; iii) it additionally

permits to exploit SCO-based communications, also by

integrating with platform-dependent native SCO libraries

via the Java Native Interface [8].

The paper finally reports the experimental evaluation

of ubiQoS audio streaming with differentiated QoS lev-

els to Bluetooth devices. The results show that it is cru-

cial to differentiate the usage of ACL-based channels

and ASB-based ones depending on the already accepted

service requests and on client profiles. The differentiated

allocation of channels to different classes of users per-

mits to achieve a simple and effective form of QoS dif-

ferentiation in a single piconet. Most important, the ex-

perimental results show that our Java-based middleware

approach at the application level introduces an accept-

able and very limited degradation if compared to the

theoretically maximum performance of the raw Blue-

tooth channels.

The rest of the paper is organized as follows. Section

2 gives an overview of the Java-based ubiQoS middle-

ware to support streaming services with differentiated

QoS levels. Section 3 describes the QoS-differentiated

communication channels available in Bluetooth and pre-

sents the state-of-the-art of the integration of Bluetooth

and Java programming. Then, Section 4 specifically fo-

cuses on how ubiQoS proxies allocate the different

channels available in the Bluetooth-based last-meter

connections, while Section 5 presents the design and im-

plementation of our JSR82ext API for Bluetooth channel

management. Section 6 reports the experimental results

about the performance of the implemented ubiQoS pro-

totype when exploiting the JSR82ext library. Concluding

remarks and future work end the paper.

2. ubiQoS for Audio Streaming with Differ-

entiated QoS over Bluetooth

The provisioning of Internet services to wireless de-

vices requires dynamically managing (and possibly

downsizing) the provided QoS levels to suit the specific

limits of served access terminals and the runtime re-

source availability in the wireless access locality, e.g.,

the currently unused piconet bandwidth. In particular,

QoS tailoring and adaptation is crucial for very resource-

consuming services such as multimedia streaming, espe-

cially when working over traditional best-effort net-

works. In addition, device mobility requires several other

support operations that limited devices cannot perform

on their own, e.g., local/global resource finding, binding,

and adjustment. On the one hand, local discovery opera-

tions may consume a large amount of device resources in

the environment exploration and in negotiations with

available entities and services. On the other hand, even

global identification and retrieval of user-related proper-

ties (such as profiles of user preferences, profiles of ac-

cess device capabilities, and security certificates) from

directory-based name services can be too long to be di-

rectly controlled and managed by terminals with limited

resources [9].

2.1. Proxy-based Middleware Architectures

For the above mentioned considerations, audio

streaming in the wireless Internet can significantly bene-

fit from distributed and active support infrastructures for

QoS management, hosted in the fixed network. In addi-

tion, there is a growing research interest in the design

choice of adopting mobile middleware proxies that work

over the fixed network, on behalf of and close to associ-

ated portable devices [4]. Proxies can decide the best

QoS management operations to perform and can act as

distributed cache repositories of previously requested

flows in successive service requests. In addition, they

can support additional management operations, such as

providing connectivity and discovering the needed re-

sources/service components, either in the current device

Proceedings of the First International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks (QSHINE’04)

0-7695-2233-5/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 13:52 from IEEE Xplore. Restrictions apply.

locality or in the whole Internet environment. Mobile

proxies could also follow device movements during ser-

vice provisioning and install automatically, only when

needed, locally to the fixed network localities visited by

portable devices. Let us notice that the importance of

proxies that move close to clients at runtime is recog-

nized in several application domains and distributed

computing technologies: for instance, in the Jini discov-

ery solution, proxy objects are dynamically installed at

the JVM on the client side to handle the interaction with

the discovered remote services.

2.2. The ubiQoS Middleware for Audio Stream-

ing with Differentiated QoS over Bluetooth

Given the above motivations and claims, we have de-

veloped the ubiQoS middleware with a primary design

choice: to provide any wireless device with a mobile

companion entity, called shadow proxy, which runs in a

wired node in the same network locality that currently

provides wireless connectivity to the device. ubiQoS

shadow proxies are implemented as mobile agents, built

on top of the SOMA programming platform*, to enable

the dynamic proxy migration where and when needed,

i.e., to the network localities that currently host wireless

portable devices requesting ubiQoS-based audio ser-

vices. As depicted in Figure 1, ubiQoS proxies are

hosted in execution environments, called places, that of-

fer the basic services for mobile agent communication

and migration. Places typically model fixed Internet

nodes and can be grouped into domains that correspond

to network localities, e.g., Local Area Networks with

IEEE 802.11/Bluetooth access points providing wireless

connectivity to portable devices (see Figure 1).

Shadow proxies represent portable devices over the

fixed network and receive, cache, and coordinate the tai-

loring/adaptation of audio flows on behalf of their client

devices. Any shadow proxy retrieves the profiles of its

served companion device and of its currently connected

user. Profiles play a central role in service discovery in

the ubiQoS Portable Device Lookup Service (PDLS), as

sketched in the following. In addition, the shadow proxy

can maintain small amounts of audio flow information in

a buffer ahead of playback (as in anti-shock mechanisms

for portable CD players), in order to smooth temporary

congestion situations in the network connections be-

tween the proxy and the server.

Shadow proxies interact with other ubiQoS compo-

nents hosted in the same domain, as depicted in Figure 2:

QoS adapters are in charge of on-the-fly tailoring of au-

dio flows depending on client characteristics and re-

* Additional information about the SOMA mobile agent system and its

full source code are available from our CVS repository at:
http://lia.deis.unibo.it/Research/SOMA/

quirements; client/server stubs enable the easy integra-

tion of ubiQoS with off-the-shelf PDA audio players and

streaming servers; PDLS supports the intra-domain per-

sonalized discovery of needed middleware components;

and the Profile Manager Service (PMS) caches profiling

information for supported devices and registered users.

Place3

ubiQoS

Domain B

Place1ubiQoS

Domain C

Place3Place2

Place2
Place3

ubiQoS

Domain A

Place1

Place2

Default

Place

Default

Place

Default

Place

Place1

WiFi/Bluetooth

access point

Figure 1. Wireless devices roaming among ubiQoS domains.

QoS adapters are in charge of compression and format

transcoding of audio flows, e.g., reduction of bit/sample

rate and conversion from WMA/OGG/WAV to MP3, to

tune the provided QoS level to the profile of device

characteristics and user preferences. No server-side tai-

loring is performed, to improve the effectiveness of data

caching along the client-server path and to keep the

server workload as low as possible. QoS adapters receive

audio data, operate transformations on them, and for-

ward processed flows to device-specific audio players.

The current implementation of QoS adapters is based on

the SUN Java Media Framework (JMF) for multimedia

reception, transmission and processing [10]. For the

transport and control of packet flows from audio stream-

ing servers over the wired network, QoS adapters exploit

the JMF APIs to integrate with the Real Time Protocol

(RTP) and its corresponding RTCP control protocol [11].

Any ubiQoS middleware component is generally port-

able on any platform that hosts a JVM. For performance

sake, QoS adapters sometimes exploit local plug-ins

available as native components, by integrating them via

the portable Java Native Interface [8]. To improve their

portability, QoS adapters retrieve dynamically the list of

plug-ins installed on their current place to bind only to

the locally available native components.

Device/player-specific client stubs run on portable

devices and are in charge of transferring audio flow re-

quests from locally installed device-specific players to

associated shadow proxies, of receiving flows, and of

forwarding them to the local players. We have currently

implemented two different stubs. The first one runs on

top of the Java standard distribution and interworks with

Proceedings of the First International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks (QSHINE’04)

0-7695-2233-5/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 13:52 from IEEE Xplore. Restrictions apply.

the standard JMF audio player; the second one is based

on the Java 2 Micro Edition and acts as a stub for the

Mobile Multimedia API audio player [12]. Similarly to

client stubs, server stubs simplify the integration of the

ubiQoS infrastructure with legacy components. They run

on the places hosting audio servers; they are in charge of

receiving flow requests and passing them to their local

servers. In addition, they transparently encapsulate the

server-provided flows into RTP ones, and forward the

RTP flows to the requesting ubiQoS components. At the

moment, we have implemented server stubs that can

wrap JMF-compliant audio sources.

ubiQoS also includes two non-moving middleware

components, PDLS and PMS. They are the only infra-

structure components that any ubiQoS domain should

have installed to participate in audio distribution. PDLS

is responsible for managing tailored lookup requests.

When an intra-domain proxy performs a discovery re-

quest for an audio flow, the local PDLS does not provide

a direct reference to an audio server to answer the ser-

vice request (the traditional behavior of lookup services)

but a reference to a suitable QoS adapter acting as the

intermediate between the proxy and the actual server.

PDLS is based on Jini and extends the SUN Reggie ref-

erence implementation of the lookup server [13]. Differ-

ently from Reggie, it considers the user/device profiles

carried by the shadow proxy to identify the needed QoS

adapter. Then, it binds the adapter to the server compo-

nent providing the requested audio flow. When the proxy

place does not already host a suitable QoS adapter,

PDLS triggers both the migration of the adapter code to

that place and the instantiation of the adapter.

Domain A

PMS

PDLS

shadow

proxy1

QoS

adapter1

Default

Place

Place3

Place2

Place1

Device

Client
QoS

adapter2

MA-based ubiQoS
component

fixed ubiQoS
component

VoD
server/player

middleware
coordination

audio flows

Profile Manager
Service

Portable Device
Lookup Service

PMS =

PDLS =

S
tu

b

Audio

Server2

Stub

Audio

Server2

Stub
Audio

Server1

Stub

Audio

Server1

Stub

towards ubiQoS

active path components

Figure 2. The ubiQoS middleware components in one domain.

PMS caches profiles of supported devices and regis-

tered users. In this way, clients are not forced to submit

their profiles together with any service request, thus re-

ducing the client-side bandwidth and power consump-

tion. PMS implements a partitioned and partially repli-

cated directory service specialized for profiles. PMS

maintains local copies of profile information and is able

to coordinate with PMSs in other domains, via either

LDAP or HTTP, to provide global profile visibility to

shadow proxies. Device and user profiles are expressed

according to the W3C Composite Capabili-

ties/Preference Profile standard specification [14].

The detailed description and implementation insights

of the different ubiQoS middleware components are out

of the scope of the paper and can be found in [9]. In the

following, instead, we specifically focus on the last hop

of the audio distribution path because it represents the

crucial point of resource discontinuity when serving

portable devices in the wireless Internet. In particular,

the paper focuses on how ubiQoS proxies can support

different QoS levels for audio provisioning by assigning

different types of Bluetooth channels to different classes

of ubiQoS users, also by considering the current state of

the piconet, e.g., the already accepted local service re-

quests. In addition, the paper shows how it is possible to

perform Java-based Bluetooth channel management, es-

sential when dealing with the open wireless Internet.

3. Bluetooth and Java Programming

ubiQoS manages differentiated QoS levels for audio

streaming to wireless Internet clients by choosing the

most suitable solution for the last-meter wireless connec-

tion. In particular, when considering Bluetooth-based

last meter connectivity, the main idea is to allocate dif-

ferent types of channels to different classes of users, also

depending on the already accepted audio streaming re-

quests in the considered piconet. Before describing the

ubiQoS channel allocation strategies, this section briefly

overviews the different kinds of communication solu-

tions available in Bluetooth and sketches the state-of-

the-art of the software supports to exploit these commu-

nication possibilities when working with Java.

3.1. Bluetooth Traffic Types

The Bluetooth specification defines two main classes

of traffic. On the one hand, framed data traffic exploits

Logical Link Control and Adaptation (L2CAP) channels

for both connection-oriented and broadcast data trans-

fers: unicast CO traffic is transferred over ACL links

with best-effort QoS; broadcast transmissions work over

ASB links with no QoS support. On the other hand, un-

framed data traffic are provided for isochronous com-

munication with guaranteed QoS requirements [15]. It is

carried over Synchronous Connection-Oriented (SCO)

links or the recently introduced extended Synchronous

Connection-Oriented (eSCO) ones (only available in

Proceedings of the First International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks (QSHINE’04)

0-7695-2233-5/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 13:52 from IEEE Xplore. Restrictions apply.

Bluetooth v1.2 specifications).

L2CAP channels built on top of ACL links support

the specification of QoS settings to indicate the desider-

ata for the delivery of data frames. QoS settings are typi-

cally used to instruct the Bluetooth core system to dis-

card undelivered packets after a given lifetime or to

specify the reliability characteristics of the data trans-

mission. In fact, ACL links exploit an error detection al-

gorithm that can trigger a simple acknowledge-

ment/repeat request (ARQ) protocol. This permits to

achieve an enhanced reliability by re-transmitting pack-

ets that do not pass the error checking algorithm at the

receivers. When transferring latency-sensitive packets, it

is possible to modify the above re-transmission choice

by indicating to discard unsuccessfully transmitted pack-

ets if their useful life has expired. In addition, the Blue-

tooth v1.1 specification provides the QoS Setup com-

mand of the Host Controller Interface (HCI) to specify

QoS settings on ACL links symmetrically. The QoS

support in Bluetooth v1.2 is still more advanced. For in-

stance, it introduces the HCI Flow Specification com-

mand to specify QoS flow parameters in an asymmetri-

cal way for (even already established) ACL connections.

Unfortunately, most firmware of the Bluetooth chips in

commerce still provides only a partial implementation of

the Bluetooth QoS support, and very first chips compli-

ant with the Bluetooth v1.2 specification are being

commercialized in these days [16].

L2CAP channels built on top of ASB links are suit-

able for the broadcasting of data flows from the master

to a group of slaves located in the same piconet and do

not provide any form of QoS management. However,

ASB links are unreliable: they have no feedback route

and this makes impossible to exploit the ARQ scheme

adopted for reliable communications over ACL links.

Bluetooth also supports SCO and eSCO links, which

are point-to-point, bi-directional, isochronous, and with

constant bit-rate (fixed to 64kb/s for SCO and user-

defined for eSCO). One master can support up to three

SCO connections to different slaves in the piconet.

However, SCO traffic is isochronous and requires strict

reservation of transmission slots, thus leaving very few

of the piconet bandwidth for other applications. Since

signaling between Bluetooth devices is primarily done

via L2CAP, it is practically impossible to have more

than two contemporary SCO links working, as they

would completely exhaust the available piconet band-

width by leaving no space for any other signaling ex-

change. Let us observe that, at least at the moment, SCO

links are a practicable solution only for analog voice

traffic, e.g., from headsets to associated mobile phones.

In fact, most commercial Bluetooth chips transfer appli-

cation data over SCO as audio pulse code modulation

samples, by exploiting lossy codecs based on continu-

ously variable slope delta modulation before transmitting

the data over the air. In addition, the SCO isochronicity

requirements hardly match with software scheduling and

the SCO support in most Bluetooth stacks for Linux and

Microsoft Windows is demonstrating to be still imma-

ture, thus leading to very poor performance [17].

3.2. The Java-based Management of Bluetooth

Communications

Java is the primary programming language to achieve

easy portability not only in the case of mobile agent-

based infrastructures such as ubiQoS, but also in any

portable and dynamically deployable middleware sup-

port for the open wireless Internet. For this reason, here

the paper describes which is the state-of-the-art of the

Java-based programming support available for the man-

agement of Bluetooth connections.

Nowadays, Java-based applications can interwork

with Bluetooth via the recently approved JSR82 standard

interface [18]. The JSR82 API allows the creation and

the management of Bluetooth L2CAP-based CO chan-

nels on top of ACL, but does not provide any support for

ASB and SCO links. In addition, JSR82 supports device

discovery, service registration/discovery via the Service

Discovery Protocol, Bluetooth security facilities (encryp-

tion, authorization, authentication), and object transfer

via the Object Exchange protocol [15]. Moreover, the

specification defines optional profiles with additional

functions on top of the JSR82 core: the Generic Access

Profile, the Service Discovery Application Profile, the

Serial Port Profile, and the Generic Object Exchange

Profile. Most relevant, JSR82 has been designed by con-

sidering the characteristics of resource-limited portable

devices: the JSR82 API can work on top of any compli-

ant implementation of the limited Java 2 Micro Edition

with the Connected Limited Device Configuration [19].

Even if JSR82 represents a fundamental first step in

opening the Java support towards Bluetooth-based con-

nectivity, its specification lacks some important func-

tionality, especially when considering the provisioning

of services with differentiated QoS levels. First of all,

the JSR82 specification does not include the support for

ASB, SCO, and eSCO links, thus making impossible to

adopt the standard API as it is in portable Java-based

middleware solutions such as ubiQoS. In addition,

JSR82 does not consider at all some advanced Bluetooth

features, such as the possibility to set QoS parameters for

L2CAP-based CO channels. Finally, JSR82 introduces

the Bluetooth Control Center as one of its main architec-

tural components, to enable users and OEMs to change

Bluetooth settings (basic security settings, security poli-

cies for connection authorizations, lists of known/trusted

devices) in a portable way. However, the specification

does not standardize the API to access the Control Cen-

ter facilities, by limiting the usability of that part of the

Proceedings of the First International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks (QSHINE’04)

0-7695-2233-5/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 13:52 from IEEE Xplore. Restrictions apply.

JSR82 API in really open environments.

Also in response to the above JSR82 API limitations,

several Java libraries, alternative to JSR82, continue to

be proposed, such as JBlueZ [20]. These libraries typi-

cally provide Java-based applications with a more exten-

sive and complete access to the native functions of exist-

ing Bluetooth software suites, by defining non-standard

proprietary APIs. They often exploit the lower-level in-

terface exported by the underlying Bluetooth stack im-

plementation they work in conjunction with, and inte-

grate with those software stacks via JNI, the standard

Java API for interfacing native software modules and the

JVM [8]. However, these libraries tend to provide only a

partial support to the QoS management of the different

types of Bluetooth channels and to propose non-portable

solutions that are tightly associated with a specific im-

plementation of the Bluetooth software suite (Bluetooth

stack + operating system).

For the above reasons, to permit the full exploitation

of the communication possibilities offered by the stan-

dard Bluetooth specifications, which are needed when

distributing audio streaming with differentiated QoS lev-

els within a piconet, we have decided to define and im-

plement an original extension of the standard JSR82 API

within the ubiQoS project. Section 5 describes how

JSR82ext extends the standard JSR82 and gives some

insights about its implementation.

4. ubiQoS Last-Meter Bluetooth Channels

ubiQoS proxies run in Bluetooth-enabled fixed net-

work places and act as piconet masters for their PANs.

They interwork with local QoS adapters and with the

other ubiQoS middleware components over the fixed

network to send to their clients the audio flows with the

properly downscaled QoS level. As already stated, in the

following, the paper focuses on the PAN side and on

how the proxies manage the different Bluetooth channels

available in their PANs.

The ubiQoS proxy can support different classes of us-

ers in its piconet, i.e., platinum, gold, silver, and bronze,

with differentiated QoS levels. It retrieves the profiles of

both involved users and requested audio flows, e.g., user

QoS requirements and the bit-rates of requested flows.

Based on these metadata, the proxy chooses the ranking

of the currently served clients and how to allocate the

Bluetooth channels over the different types of link.

The ubiQoS proxy exploits both unicast ACL and

broadcast ASB links. In particular, since ACL links are

expected to provide a higher quality transmission than

ASB ones, the main ubiQoS guideline is to allocate ACL

links to privileged users if there is enough piconet band-

width; when the number of clients in a single piconet is

too high for exploiting only ACL links, ubiQoS uses

ASB links (less bandwidth-consuming and of minor

quality than ACL) to transfer audio streaming to less

privileged clients. In addition, the proxy supports the

preemption of less privileged clients in the case of more

privileged new clients joining the service in the piconet.

More in detail, ubiQoS decides to accommodate only

one platinum client in a piconet at a time. The platinum

client exploits an asymmetric ACL link with DH5 pack-

ets (maximum bandwidth achievable in theory = 721

Kbps), by leaving to other local slaves a small amount of

bandwidth that is allocated to remaining non-platinum

clients via ASB links. When the piconet does not host a

platinum client, the ubiQoS proxy can decide more ar-

ticulated strategies for link allocation. Its default choice

is to serve gold clients via ACL links and bronze clients

via ASB. Silver clients, instead, are assigned with either

ACL or ASB links depending on the piconet state, i.e.,

the number and the type of the already serving audio

streaming requests in the locality. It is the ubiQoS proxy

that dynamically decides to assign either ACL or ASB

links to silver clients with the goal of maximizing the

bandwidth utilization in its piconet, as shown quantita-

tively in the experimental result section.

Let us finally observe that the ubiQoS proxy can also

modify the link allocation to clients at provision time.

For instance, after the arrival of a new gold user in a pi-

conet hosting 3 gold and one silver slaves, all currently

served with ACL links, the proxy can de-class the silver

client by switching it to an ASB-based connection. This

switching operation frees one ACL-based connection,

which is assigned to the new gold slave. The next section

show how ubiQoS proxies can decide which types of

link to exploit for their master-slave connections by ex-

ploiting our JSR82ext API.

5. The JSR82ext API Implementation

Within the framework of the ubiQoS project we have

designed and implemented the JSR82ext library by ex-

tending the open source JavaBluetooth JSR82 implemen-

tation [7]. The main goal is to provide Java-based appli-

cations with functions for the application-level QoS

management of different types of Bluetooth channels:

ACL-based unicast CO, ASB-based broadcast connec-

tionless, and SCO channels (the code of the JSR82ext

library is available at http://lia.deis.unibo.it/Re-

search/ubiQoS/audioStreaming/).

Figure 3 depicts the layered architecture of the

JSR82ext stack. The primary components originally de-

veloped within the ubiQoS project are L2CAP CO,

L2CAP broadcast, L2CAPLink, SCO CO, and SCO-

Transport. The abstractions provided by the three upper-

layer components allow the QoS-enabled transmission

and retrieval of application-level data between Blue-

tooth-enabled applications.

Proceedings of the First International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks (QSHINE’04)

0-7695-2233-5/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 13:52 from IEEE Xplore. Restrictions apply.

Figure 3. Architecture of the JSR82ext protocol stack.

The L2CAP CO module allows the establishment of

unicast L2CAP CO channels on top of ACL links, by

exporting a completely JSR82-compliant API to the

ubiQoS middleware. In addition to the standard JSR82

functions, it permits to specify the desired QoS charac-

teristics for the best-effort CO channels. For instance, the

module allows ubiQoS proxies to control the priority of

the Java threads responsible for managing the buffers

associated with the transmission channels and also to set

link-layer QoS requests (token rate, peak bandwidth, and

latency) by interworking with the HCI QoS Setup com-

mand. The L2CAP ASB module supports the creation

and exploitation of broadcast communications on top of

ASB links, by proposing an API similar to the JSR82

one. It also permits some forms of software-based QoS

management (differentiated prioritization of application-

level buffer scheduling), given the lack of the QoS func-

tionality provided in this case at the link layer.

The L2CAPLink module significantly extends the

JavaBluetooth L2CAPLink by implementing the L2CAP

protocol logic, e.g., channel creation, packet segmenta-

tion, and reassembly, both for ACL and ASB links. This

component is built on top of the HCIDevice layer, which

provides a simple Bluetooth device abstraction, to inter-

act with available adapters at the HCI level. The HCI-

Device module allows the transmission and retrieval of

data, command, and signaling packets between the upper

stack layers and the Bluetooth controller at the adapters.

The BlueZTransport component is a low-level inter-

face between the HCIDevice layer of our protocol stack

and BlueZ, the native Bluetoothv1.1 protocol stack in-

cluded in the standard distributions of the Linux kernel.

This module enables the HCIDevice layer to communi-

cate with Bluetooth devices at the HCI level via JNI [8]

and the low-level BlueZ native API, thus allowing the

usage of JSR82ext with the wide range of Bluetooth de-

vices supported by BlueZ [21]. We have developed the

BlueZTransport module to overcome the limitations of

the JavaBluetooth support which, as a 100% pure Java

system, cannot interface with native Bluetooth device

drivers and can only support serial Bluetooth adapters by

means of the javax.comm API.

We have also developed from scratch the Java-based

SCO module, by integrating with basic support mecha-

nisms provided by native BlueZ SCO libraries. The plat-

form-dependent native support for SCO sockets is inte-

grated in a portable way via JNI in the SCOTransport

module that provides an interface for data transmis-

sion/receiving over Bluetooth SCO links. Additional de-

tails about JSR82ext SCO support are out of the scope of

the paper and can be found at the ubiQoS Web site.

JSR82ext is not the only JSR82-compliant stack on

Linux. The recently released Avetana protocol stack is

tightly integrated with BlueZ and can significantly con-

tribute to leverage the deployment of Bluetooth-enabled

Java applications on the Linux platform [22]. However,

since the implementation of the lower layer of our stack

is based on the exploitation of native API to access the

HCI interface of Bluetooth adapters (commonly avail-

able in most native Bluetooth protocol stacks nowadays),

our approach goes beyond Avetana in providing a good

separation between the platform-independent middle-

ware components that implement the upper layers of the

protocol stack and the native components that access

Bluetooth adapters via native platform-dependent APIs.

As a result, the JSR82ext solution is more easily portable

among different operating systems and Bluetooth soft-

ware stacks; this characteristic is crucial in the open

wireless Internet and even stressed by the current avail-

ability of a large set of heterogeneous Bluetooth support

implementations competing on the market.

6. Experimental Results

We have measured the performance of the ubiQoS

middleware when providing audio streaming over Blue-

tooth, by concentrating specifically on the last-meter

wireless link, to test the feasibility of the Java-based

ubiQoS management of the different types of Bluetooth

channels. In particular, our experiments have measured

throughput, packet delay, and standard deviation in

packet delays when the ubiQoS proxy exploits CO and

broadcast channels via the JSR82ext interface.

In the testbed, the master is a PC Pentium III 1.13

GHz, while the piconet slaves are laptops, which move

during service provisioning but stay all located within

the range of the Bluetooth master visibility. The master

and the slaves host Linux (kernel version 2.4.26-mh1)

with the latest version of the BlueZ userspace tools

(bluez-utils 2.7, bluez-libs 2.7).

The master can distribute different audio flows, with

different QoS levels, to the different slaves. In the ex-

periments, we have used audio flows requiring a pulse

code modulation stream with high-quality constant bi-

Proceedings of the First International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks (QSHINE’04)

0-7695-2233-5/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 13:52 from IEEE Xplore. Restrictions apply.

trate of 512Kbps (note that phone quality audio requires

64Kbps, while CD-quality flows need 1378Kbps), in or-

der to stress the bandwidth available in the piconet.

Figures 4a, 4b, and 4c report, respectively, through-

put, packet delay, and standard deviation (their average

values on a set of 100 tests) for ACL-based and ASB-

based audio distribution, by varying the number of

slaves. All the tests used the DH5 packet type, which

gives the best performance results among all the

ACL/ASB packet types without payload protection

(DH1, DH3, DH5). We have not considered DM pack-

ets, whose payload is Forward Error Correction-coded,

because less suitable for audio streaming [23].

As expected, in the ASB case the performance is

mostly independent from the number of slaves. In the

ACL case, instead, the performance has shown to sig-

nificantly deteriorate with the increasing of the number

of slaves.

0

100

200

300

400

500

600

1 2 3 4

Number of slaves

A
v
e
ra

g
e
 t

h
ro

u
g

h
p

u
t

p
e
r

s
la

v
e

(K
b

it
/s

)

ACL

ASB

Figure 4a. Average throughput per slave for ACL and ASB.

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4

Number of slaves

A
v

e
ra

g
e

 p
a

c
k

e
t

d
e

la
y

 (
m

s
e

c
)

ACL

ASB

Figure 4b. Average packet delay for ACL and ASB links.

The low ASB throughput is motivated by the small

size used by the controller of currently available Blue-

tooth USB adapters for ASB packets (22 bytes, with a 17

bytes payload and a 22.7% overhead posed by packet

headers) in comparison with a significantly greater size

for ACL packets (681 bytes with 672 bytes of payload).

In addition, we have also measured the packet loss for

both ACL and ASB links. In the ACL case there is a

negligible percentage of lost data. In the ASB case, we

have experienced a higher packet loss (around 7% on

average), mostly independent of the number of slaves in

the piconet. This packet loss affects the overall quality of

the transmission over ASB links but, however, is accept-

able for audio streaming applications. This corroborates

the idea that ASB links can be a valid low bandwidth

alternative to ACL links for audio streaming, especially

in the case of time-bound traffic and of a high number of

concurrent slaves. For this reason, to exploit the piconet

bandwidth at its best, the ubiQoS proxy decides to pro-

vide silver users with ACL links if and only if there are

no more than 4 ACL links already in use within the lo-

cality. On the contrary, if 4 ACL links are already in use

and the new client is not privileged with regards to the

already accepted ones, the proxy serves it by exploiting

an ASB link not to deteriorate the performance of the

working ACL-based connections.

Finally, it is worth noticing that the experimental re-

sults also point out that the Java-based application-level

approach achieves performance results not far from the

raw Bluetooth hardware performance, in terms of both

throughput and packet delay [23]. This confirms the vi-

ability of flexible application-level overlays to support

QoS-enabled audio transmission in the Bluetooth-

enabled wireless Internet.

0

2

4

6

8

10

12

14

16

18

1 2 3 4

Number of slaves

A
v
e
ra

g
e
 s

ta
n

d
a
rd

 d
e
v
ia

ti
o

n
 f

o
r

p
a
c
k
e
t

d
e
la

y
s
 (

m
s
e
c
)

ACL

ASB

Figure 4c. Average std deviation in delay for ACL and ASB.

7. Conclusions and Current Work

Bluetooth is emerging as a market-successful connec-

tivity technology for the last-meter access to the wireless

Internet. The integration of the traditional best-effort

Internet with Bluetooth PANs calls for middleware over-

lay networks capable of supporting QoS-enabled ser-

vices, in particular by operating QoS management opera-

tions at the wired/wireless edges. Recent standardization

efforts are making possible to design and implement first

Java-based portable middleware solutions for these sce-

narios. The development and deployment of the ubiQoS

prototype have produced first experimental results that

demonstrate the feasibility of the application-level mid-

dleware approach, at least for supporting audio stream-

Proceedings of the First International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks (QSHINE’04)

0-7695-2233-5/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 13:52 from IEEE Xplore. Restrictions apply.

ing at the usual Internet transmission rates.

The first promising experimental results obtained are

encouraging further research activities within the frame-

work of the ubiQoS project and further in-depth experi-

mental evaluations, especially in the case of the piconet

master streaming audio flows on top of both ACL and

ASB channels at the same time. We are extending the

ubiQoS middleware to include also the Bluetooth guar-

anteed QoS management functions supported by the

novel eSCO specifications. In addition, we are working

on the porting of the JSR82ext native part implementa-

tion over both the Affix stack for Linux and the FreeBT

Bluetooth stack for Microsoft Windows XP [24, 25]; the

next JSR82ext release will be able to dynamically dis-

cover the locally installed Bluetooth software stack and

the underlying operating system, so to bind to the needed

platform-specific JSR82ext modules only at provision

time.

Acknowledgments

Work supported by the Italian Ministero dell'Istruzione,

dell'Università e della Ricerca (MIUR) in the framework of the

FIRB WEB-MINDS Project "Wide-scale Broadband Middle-

ware for Network Distributed Services" and by the Italian Con-

siglio Nazionale delle Ricerche (CNR) in the framework of the

Strategic IS-MANET Project "Middleware Support for Mobile

Ad-hoc Networks and their Application".

References

[1] K. Sairam, N. Gunasekaran, S.R. Redd, “Bluetooth in

Wireless Communication”, IEEE Communications,

Vol. 40, No. 6, June 2002.

[2] P. Johansson, M. Kazantzidis, R. Kapoor, M. Gerla,

“Bluetooth: an Enabler for Personal Area Networking”,

IEEE Network, Vol. 15, No. 5, Sept.-Oct. 2001.

[3] H. Xu, J. Diamand, A. Luthra, “Client Architecture for

MPEG-4 Streaming”, IEEE Multimedia, Vol. 11, No.

2, Apr.-June 2004.

[4] P. Bellavista, A. Corradi, R. Montanari, C. Stefanelli,

“Context-aware Middleware for Resource Management

in the Wireless Internet”, IEEE Transactions on Soft-

ware Engineering, Vol. 30, No. 2, Dec. 2003.

[5] R. Oppliger, “Security at the Internet Layer”, IEEE

Computer, Vol. 31, No. 9, Sep. 1998.

[6] P. Bellavista, A. Corradi, C. Stefanelli, “Mobile Agent

Middleware for Mobile Computing”, IEEE Computer,

Vol. 34, No. 3, March 2001.

[7] Sourceforge.Net – The JavaBluetooth Stack,

http://sourceforge.net/projects/javabluetooth

[8] Sun Microsystems, Inc. – The Java Native Interface 1.1

Specification, http://java.sun.com/j2se/1.4.2/docs/

guide/jni/spec/jniTOC.html

[9] P. Bellavista, A. Corradi, C. Stefanelli, “Application-

level QoS Control for Video-on-Demand”, IEEE Inter-

net Computing, Vol. 7, No. 6, Nov.-Dec. 2003.

[10] Sun Microsystems, Inc. - The Java Media Framework

(JMF) API, http://java.sun.com/products/java-media/

jmf/

[11] T. Braun, "Internet Protocols for Multimedia Commu-

nications - Resource Reservation, Transport, and Ap-

plication Protocols", IEEE Multimedia, Vol. 4, No. 4,

1997.

[12] Sun Microsystems, Inc. – The Mobile Media API

(MMAPI), http://java.sun.com/products/mmapi/

[13] Sun Microsystems, Inc. – The Jini Reggie Discovery

Implementation, http://java.sun.com/developer/prod-

ucts/jini/index.jsp

[14] W3 Consortium - Composite Capability/Preference

Profiles (CC/PP) – http://www.w3.org/Mobile/

[15] Bluetooth SIG – Bluetooth Core Specification v1.2,

https://www.bluetooth.org/foundry/adopters/document/

Bluetooth_Core_Specification_v1.2

[16] M. Holtmann, Bluetooth Hardware Support for BlueZ,

http://www.holtmann.org/linux/bluetooth/ devices.html

[17] R. Kapoor, Ling-Jyh Chen, Yeng-Zhong Lee, M.

Gerla, “Bluetooth: Carrying Voice over ACL Links”,

4th IEEE Int. Workshop on Mobile and Wireless Com-

munications Network, 2002.

[18] Java Community Process – Java APIs for Bluetooth

(JSR82), http://jcp.org/en/jsr/detail?id=82

[19] Sun Microsystems, Inc. - Java 2 Platform: Micro Edi-

tion (J2ME) and Connected Limited Device Configura-

tion (CLDC), http://java.sun.com/j2me/

[20] Sourceforge.Net – JBlueZ: the Java Extension for the

BlueZ Bluetooth Protocol Stack, http://jbluez.source-

forge.net

[21] BlueZ Project – BlueZ, the Official Linux Protocol

Stack, http://www.bluez.org

[22] Avetana – The Avetana JSR82 API Implementation,

http://www.avetana-gmbh.de/avetana-gmbh/jsr82.xml

[23] S. Zurbes, “Considerations on Link and System

Throughput of Bluetooth Networks”, 11th IEEE Int.

Symp. Personal, Indoor and Mobile Radio Communi-

cations (PIMRC), Sep. 2000.

[23] Sourceforge.Net – The Affix Bluetooth Protocol Stack

for Linux, http://affix.sourceforge.net

[24] FreeBT – The FreeBT Bluetooth Protocol Stack for

Windows, http://www.freebt.net

Proceedings of the First International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks (QSHINE’04)

0-7695-2233-5/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 13:52 from IEEE Xplore. Restrictions apply.

