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Abstract—Tactical edge networks provide one of the most 
challenging environments for communications, which 
significantly complicates the development of efficient and robust 
information dissemination solutions. In our previous work, we 
found that exploiting highly mobile nodes, such as Unmanned Air 
Vehicles, with cyclic mobility patterns, as message ferries can 
significantly improve the performance of information 
dissemination solutions. However, our experience demonstrated 
that robust forecasting mechanisms are essential in order to 
withstand frequent changes in the mobility patterns of message 
ferrying nodes. This paper presents an extension of the adaptive 
node presence forecasting component developed for DisService, a 
Peer-to-peer information dissemination system, that provides 
estimates of tolerance and accuracy of node mobility forecasts. 
We tested the extended forecasting mechanism in a simulation 
environment and found that it can lead to significant 
improvements in the timeliness and reliability of information 
dissemination. 

Opportunistic communications; information dissemination; 
tactical networks, statistical learning. 

I. INTRODUCTION 

Tactical edge networks provide one of the most 
challenging environments for communications, with mobile 
nodes connected via limited bandwidth and highly variable 
latency wireless ad-hoc links in RF environments. The 
dynamic behaviour of nodes leads to a frequently changing 
network topology and widely varying loads being placed on 
the network by users and applications. 

Information dissemination is a critical function that 
enables tactical network applications, such as sensor data 
acquisition, to distribute information to multiple peers across 
the network. Because of the aforementioned challenges, and of 
the potentially high number of peers that have to be reached, it 
is extremely difficult to implement efficient dissemination 
algorithms that provide timely and reliable information 
delivery in this type of environments. 

The peculiar nature of tactical networks calls for ad hoc 
information dissemination algorithms that can dynamically 
adapt to the current network topology and conditions. More 
specifically, the high mobility of some of the nodes that are 
typically found in tactical networks, such as Unmanned Air 
Vehicles, suggests the opportunity to use those nodes as 
message ferries to improve the performance of the 
dissemination process. This requires explicit support at the 
middleware level to monitor and process node mobility 
information, identify common behaviors, and produce reliable 
forecasts of future contacts with message ferrying nodes. 

In our previous work, we have developed a node mobility 
monitoring and presence forecast solution to detect cyclic 
node mobility patterns and to leverage that information to 
support information dissemination [1]. We have integrated the 
forecast mechanism in DisService, an information 
dissemination middleware purposely designed for tactical 
network applications [2] [3]. 

While the mechanism that we developed proved capable of 
successfully detecting cyclic movements and predicting the 
next appearance of the moving node, additional experiments 
demonstrated that for many applications, this knowledge is not 
enough and might actually be detrimental. In fact, our 
experience demonstrated that applications that relied 
exclusively on future node presence forecasts to schedule their 
message transmissions to message ferries incurred severe 
performance losses in case of changes in the mobility patterns. 
The frequent redeployment and repurposing of highly mobile 
tactical network nodes, such as UAVs, in response to changing 
mission objectives required the consideration of more resilient 
solutions that could withstand changes in the mobility patterns 
of message ferrying nodes. 

To this end, there is the need to provide applications with 
additional information about the reliability of the forecasts in 
order to support their decision making. This requires the 
development of more sophisticated forecasting mechanisms 
that continuously evaluate their performance and estimate the 
level of confidence for the forecasts. 

This paper presents an extension of the adaptive node 
presence forecasting component for the DisService project that 
provides estimates of the forecast accuracy and tolerance 
attributes. This is essential to provide applications with 
contextual information that they can leverage when deciding 
whether to trust a forecast or not. 

We tested the extended forecasting mechanism of 
DisService in an NS 3 simulation environment and found that 
providing applications with an estimate of the accuracy of 
forecasts can lead to a significant increase in the timeliness 
and reliability of information delivery. 

II.  TACTICAL EDGE NETWORKS 

Tactical edge networks are highly heterogeneous and 
dynamic environments where both mobile, e.g., soldier 
platoons and ground vehicles, and stationary, e.g., ground 
sensor systems and Tactical Operation Centers (TOCs), 
operate, exchanging data and commands to support the 
accomplishment of mission objectives. This scenario typically 
involves many concurrently running applications, such as Blue 



Force Tracking (BFT) - applications that provide situational 
awareness information regarding the presence and location of 
friendly forces, remote unmanned vehicle control, and sensor 
data mining/fusion, which run essential tasks and compete for 
the scarce bandwidth and computational resources. 

Unmanned Aerial Vehicles (UAVs), and other airborne 
assets such as Joint Surveillance Target Attack Radar System 
(J-STARS), are becoming increasingly prevalent in tactical 
networks, as they are extremely effective to realize battlefield 
monitoring, to process information and carry it between 
disconnected portions of the network, and in general to operate 
in highly hazardous areas where human presence would be 
impossible. UAVs can fly autonomously or be piloted 
remotely, can be expendable or recoverable, and can carry a 
lethal or nonlethal payload. 

Tactical Unattended Ground Sensors (T-UGS) are small 
ground-based sensors that collect intelligence through seismic, 
acoustic, radiological, biological, chemical, and electro-optic 
means. These sensors are networked devices that provide an 
early warning system to supplement a platoon-sized element 
and are capable of remote operation. By using P2P models 
combined with mobile ad-hoc network technologies, sensors 
can use high-speed short-range radios to exchange and 
exfiltrate data to other sensors and nearby units. With a high-
speed P2P link, a sensor can send high-resolution imagery and 
motion video that would be impractical to transmit over a low-
speed satellite link. 

Finally, soldier-carried nodes, such as wearable computers 
or PDAs, are the last type of nodes found in tactical networks, 
as they can receive and send information to other entities in 
the environment. While on a mission, soldiers need to access a 
variety of information including maps, aerial reconnaissance, 
various sensor data, intelligence reports, and blue and red 
force tracking. Some of this data may be preloaded onto the 
nodes and some may become available later. 

The tactical network scenario shares many similarities with 
non-military applications such as disaster recovery. As UAV 
technologies improve and become more affordable due to 
economies of scale, their adoption in civilian applications is 
expected to increase, spreading well beyond emergency 
response scenarios. Even now, UAVs are employed for 
monitoring critical engineering structures (dams, etc.), for 
search and rescue operations in difficult to reach or hazardous 
locations, for mail delivery in uninhabitable places (off-shore 
platforms, polar caps, etc.), for livestock monitoring, etc. 

 
Figure 1.  The tactical network scenario. 

III.  INFORMATION DISSEMINATION IN TACTICAL 

NETWORKS 

Support for information dissemination is essential in 
tactical networks. The peculiar characteristics of tactical 
networks call for disruption-tolerant approaches to information 
dissemination and opportunistic network exploitation. In fact, 
often information must be delivered to nodes that periodically 
disconnect from the rest of the network, requiring reliability 
mechanisms such as caching and periodic retransmission of 
important (non-obsolete) data. For maximum efficiency, the 
data dissemination system should not only be capable of 
withstanding node mobility, but it should also take advantage 
of it whenever possible. 

Tactical applications present multiple patterns of data 
dissemination. For instance, BFT data is transmitted from each 
node to every other node in a many-to-many pattern. Sensor 
fusion data requires many nodes (sensors) to transfer data to 
one node (gateway sensor or fusion node) and then onto some 
consumers in a many-to-one and one-to-few pattern. The 
above requirements typically translate to multiple types of 
information dissemination services operating concurrently.  

There is an opportunity to exploit common patterns in 
node mobility and information to improve the timeliness and 
availability of information being disseminated. This requires 
learning mechanisms that can process node mobility and 
data/service usage information, identify common behaviors, 
and produce reliable forecasts that can be used as the basis for 
decision making in information caching and routing. 

More specifically, node mobility forecasts represent an 
interesting asset to rely upon in order to improve information 
delivery. In this context, forecasts on future node presence of 
message ferrying nodes would be important for various 
reasons. The first one is for adaptive beaconing. Carrying out 
targeted checks for the presence of a UAV, rather than doing 
them continuously, allows gateway nodes to remain in a 
dormant state for a longer amount of time, because they are 
activated less frequently. This allows resource-constrained 
nodes publishing information, such as sensor nodes, to save 
energy they would otherwise spend with frequent network 
broadcasts. 

The second reason is for improved caching support. 
Leveraging forecast information, nodes can better decide 
which peers are more likely to be encountered and therefore 
which among the cached messages are more likely to be 
delivered. This notion can be exploited to decide the subset of 
cached messages that should be kept, and the subset that can 
be dropped. Improved cache management can lead to a 
significant improvement on information delivery, especially 
when the storage capabilities of the peers are scarce. In 
addition, it is possible to further enhance the caching process 
by cross-correlating node presence forecasts with metadata 
about message validity time. 

Finally, the last reason is to support data transformation. In 
particular, if the forecasts also include the duration of expected 
contact, publisher and gateway nodes can predict the overall 
capacity that will be available to move data. This can be 
derived as a function of the channel bandwidth and the 
duration of contact. Nodes can then use this information to 
prioritize the data that is replicated or to transform the data 



(for example, by reducing the size of imagery) to make sure 
that transfers will be successful within the time available. 

Being able to take advantage of node presence predictions 
requires explicit support at the middleware level. The 
information dissemination middleware on the publishing 
nodes should continuously check the presence of message 
ferrying nodes in communications range, extrapolate cyclic 
mobility patterns, and provide applications with a time 
estimate for the next contact with message ferries. 

IV.  FORECASTING NODE MOBILITY IN DISSERVICE 

This Section provides an overview of the forecasting 
mechanism implemented in DisService and discusses the 
network monitoring phase that collects information to use for 
predictions, as well as the forecasting model. For additional 
information, the reader is referred to [1]. 

A. Network Monitoring 

To collect information to feed the forecast model 
algorithm, each DisService node continuously monitors and 
records the contact window metric, which represents a 
particularly interesting source of information about node 
mobility. We define a contact window between nodes N1 and 
N2 as the tuple containing the start time and the duration of a 
time interval during which N1 and N2 are in communication 
range and can be considered neighbors. 

Contact window-based metrics can be easily measured by 
analyzing presence messages that DisService-enabled nodes 
periodically exchange as they explore new neighborhoods. 
Each node stores a contact window history table, containing 
information about its current and previous contact windows 
with neighbor nodes. Nodes create (or update) contact window 
as they receive presence messages from their neighbors and 
close contact windows when they do not receive any presence 
message for a configured length of time. 

By analyzing past contact window information, the 
forecasting algorithm is capable of detecting cyclic patterns in 
node mobility and to predict the next time at which a specific 
mobile node will come back in communication range, as well 
as the expected duration of that contact. 

B. Forecasting Model 

DisService adopts a forecasting model based on the 
Exponentially Weighted Moving Average (EWMA) 
algorithm. The EWMA algorithm is simple enough that it can 
be easily implemented in resource constrained nodes such as 
ground sensors. 

The lightweight computational requirements of the EWMA 
algorithm also enable the building of more sophisticated 
forecasting solutions on top of it. In fact, the latest version of 
DisService adopts an adaptive forecasting model that 
implements 3 different EWMA estimators with different 
smoothing parameters (0.2, 0.5, and 0.8, respectively) at the 
same time, and dynamically switches to the most accurate one. 

V. COMPLEMENTING PREDICTIONS WITH TOLERANCE AND 

ACCURACY ESTIMATES 

Our experience with the development and deployment of 
information dissemination services on tactical networks 
demonstrates that providing applications with forecasts on 

node presence is not enough to enable them to make good 
information dissemination decisions. 

Given the peculiarity of the tactical network scenario, 
forecasts that simply produce point estimates on the future 
presence of given nodes are likely to be of very limited use. In 
fact, applications that leverage future presence forecasts of 
message ferrying nodes might base their caching and 
forwarding decisions upon unreliable information. This is 
especially likely in case of changes in the mobility patterns of 
message ferrying nodes. 

To address this problem, we have extended the DisService 
forecasting model discussed in the previous section to 
complement node presence forecasting information with 
additional attributes, such as forecast accuracy and tolerance 
estimates. 

Let us analyze how DisService calculates those estimates 
on a node A that wants to predict the start time of the next 
contact with a node B. First, DisService calculates the 
tolerance estimate, which is obtained by taking a portion, 
controlled by a system parameter β (with 0 < β < 1) of the 
average contact window duration, calculated over the last N 
records: 
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The calculations of the accuracy estimate are significantly 
more complicated. Let’s call PS the instant in which the check 
is scheduled and CS the start time of the actual contact. Then, 
we define the displacement ∆ as the difference between CS and 
PS: 

ss PC −=∆  

Since ∆ is the difference between the actual start time of a 
contact and the predicted start time of that contact, this 
quantity can be used to estimate the inaccuracy of the 
forecasts. In particular, a first estimator could compute the 
inaccuracy as the arithmetic average of the last N 
displacements: 
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where M is the number of contacts that node A has registered 
with node B. However, our extensive experiments 
demonstrated that the value obtained in this way is a poor 
estimate of the real inaccuracy, because it considers all the 
displacements with the same weight. So, if a prediction was 
well in advance, it could be compensated by a previous 
prediction that was very late and the final inaccuracy would 
incorrectly consider the sequence of predictions as accurate. 

In order to give more importance to recent displacements, 
we then devised a second estimator that applies the EWMA 
algorithm on the last N displacements, with a relatively high 
value for the smoothing parameter: 
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However, experiments demonstrated that despite the major 
importance given to the most recent displacements, this 
second estimator presents the same problems of the previous 
one. 

We then devised a third estimator that considered the 
absolute value of displacements. In addition, the estimator 
checks whether the predicted instant Ps actually lies within the 
subsequent contact window. Only if a prediction is wrong, the 
corresponding displacement is evaluated in the inaccuracy 
formula; otherwise, a null displacement is considered. So we 
have: 
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Our experiments demonstrated that this third algorithm 
produced good estimates for the inaccuracy of forecasts. We 
then decided to adopt it in our extended forecasting 
mechanism. 

To produce an estimate of the forecast accuracy, we need 
to consider the tolerance estimate as well. We then defined the 
error measure as: 

)0,max( toleranceinaccuracyerror −=  

We use the error measure above to compute the accuracy 
of predictions, applying an exponential mapping: 

erroreaccuracy −=  

In this way, we have an accuracy that is inversely 
proportional to the error committed and that conveniently lies 
within the (0; 1] range. 

The current accuracy measures of predictions for every 
known node are maintained in the World State component of 
DisService, for each node that has prediction capability. When 
a node must decide whether predictions-based dissemination 
strategy is a good choice, it can check if the accuracy measure 
is greater than a desired threshold, e.g., 0.75. 

Once a prediction for the next contact with the node B has 
been computed by node A, that prediction is stored in the 
World State component of DisService on node A and the next 
check for the presence of B is scheduled at the predicted time 
plus the tolerance estimate. 

VI.  ADAPTIVE COMMUNICATION DECISIONS 

DisService provides a customizable controller architecture 
that allows the dynamic configuration of behaviors such as 
caching, replication, and forwarding. Leveraging contact 
window information, the strategy manager component needs 
to choose whether to discard incoming messages, put them in 
the message cache, and/or forward them to other neighboring 
nodes. 

The different types of nodes in a tactical network follow 
different patterns of communication, depending on their 
purpose, technical features, and mobility. Every node should 
use a specific information dissemination strategy, which can 
be based on predictions or not as needed. 

That is, computation of forecasts makes sense only to some 
nodes and only in specific conditions. Two important data in 
this contest are the availability and the accuracy estimates of 
forecasts. Thanks to this information, the Strategy Manager 
component of DisService can decide if it is appropriate to use 
a prediction-based dissemination strategy or a standard 
epidemic one. 

If predictions are not available or do not have a sufficient 
level of accuracy, DisService disseminates messages with an 
epidemic strategy. Otherwise, forecasts can be used in 
different ways depending on the node that computed them. In 
fact, predictions are not always available; for instance, when 
the necessary information for the computation is not available. 
In this case, the sender needs to do periodic and more closely 
spaced checks in order to verify the presence of the node to 
which we are interested in sending messages. Also, predictions 
can be available, but incorrect. Therefore, we can not blindly 
rely on the predictions if they are present, but we also need to 
check their level of accuracy and decide whether it makes 
sense to use them. 

Notice that forecasts on future contacts with other nodes 
might be interesting not only to drive message caching and 
processing decisions. In fact, some nodes may be interested in 
knowing when another node will be in communication range. 
Then, these nodes can use prediction for the next contact with 
the entity of interest to know when trying to communicate 
with that entity. This way of operating avoids continuous 
probing or monitoring for the presence of the recipient, thus 
saving energy. 

Other nodes may have a lot of data to send, but narrow 
contact windows, which does not allow the transmission of all 
this data. In this case, forecasts for the duration of the contact 
window can be exploited to send selected data, so that they are 
delivered in time. This way will prevent the transmission of 
data that would not be received by the addressee because the 
contact was already over. 

VII.  EXPERIMENTAL RESULTS 

We evaluated the extended DisService node mobility 
forecasting mechanism by testing it in a simulated 
environment reproducing a typical battlefield scenario. We 
used Network Simulator 3 [4], and in particular version 3.11, 
for all the experiments presented in this paper. 

In the reproduced evaluation scenario, two platoons of 
soldiers (of 18 and 20 units respectively) move in groups 
across the battlefield. Two groups of stationary T-UGS ground 
sensor nodes (each composed by 20 units) collect data and 
disseminate it to subscribers. In each group of nodes, a special 
node acts as leader and operates as a gateway with respect to 
other nodes in communications range. Finally a UAV speeds 
up the data dissemination process by carrying data between 
the sensor field and the TOC.  



All the nodes are connected through wireless 802.11 
connections at 6Mbps with a non QoS-enabled MAC layer; 
the TOC is also connected to each of the soldier patrols 
through a point-to-point tactical radio link at 1.5Mbps. 

In each experiment, the TOC is placed in the same fixed 
position, while the sensors are positioned randomly in two 
300x300-meter areas on the opposite sides of the battlefield. 

The UAV follows a modified Random Waypoint Mobility 
model, with three waypoints set respectively near the TOC and 
in the middle of each ground sensor field. More specifically, 
our model allows for configurable-length pauses in the route 
of the UAV, at selected waypoints. This allow the simulation 
of particularly long delays, representing unexpected events or 
changes in the mission objectives, that force the UAV to stop 
in a certain place, thereby breaking its cycling mobility 
pattern. After the break, the UAV resumes its journey with the 
same mobility model that was in place before the stop.  

In the first experiment, we tried to use the forecasts 
computed by DisService without considering tolerance or 
accuracy estimates. This is to show the limits of using point 
predictions, without the support of accuracy information. In 
particular, in these simulations, gateway sensor nodes 
calculate forecasts for the next contact with the UAV, which 
has a regular mobility pattern, to detect when to wake up and 
send data to the airborne vehicle. Each gateway sensor 
registers the instant predicted and those in which a contact 
actually occurred. 

The results shown in Table I demonstrate that the exact 
value of the forecast is often in advance of the actual start of 
the next contact. This is due to small delays that inevitably 
occur in the motion of the UAV. As a result, there is the need 
to consider an appropriate level of tolerance for the values 
produced by the forecasting algorithm, in order to realize a 
resilient forecasting solution.  

TABLE I.  EVALUATION OF POINT FORECASTS. 

Prediction value 
(ms) 

Next contact 
window (ms) 

Point forecast 
correct? 

Error             
(ms)  

168755 171000 - 193800 No -2245 

306081 304000 - 327200 Yes  

370156 370600 – 392800 No -444 

506460 502600 – 527200 Yes  

569647 569000 - 590800 Yes  

695448 698400 - 720400 No -2952 

763626 766800 - 790200 No -3174 

835000 835200 - 858200 No -200 

 

However, introducing tolerance estimates is not enough to 
enable applications to use all the forecast information 
effectively. In fact, the major disadvantage of forecasts 
providing point estimates is that, even considering an adequate 
tolerance level, they could be applied inappropriately, thus 
leading to performance losses instead of performance gains. 
For instance, let us consider how gateway sensor nodes could 
use prediction information about the future presence of UAV. 

In case of inaccurate forecasts, a gateway would wake up at 
the (wrong) predicted instant and send its data, which probably 
will be lost. Augmenting forecasts with information about 
their accuracy, instead, would allow the sensor to realize when 
predictions start to be unreliable and, if so, to change its 
dissemination strategy. 

The second experiment aims at demonstrating the 
robustness of our forecasting mechanism to contingencies that 
may modify or delay cyclic mobility patterns of message 
ferrying nodes. For this purpose, we reenabled the calculations 
of tolerance and accuracy estimates and modified the mobility 
model for the UAV by inserting a long pause in the middle of 
the simulation. In particular, we configured the UAV to stop 
by the TOC for a 60 second interval. After that, the UAV 
restarts moving with the previous mobility pattern. 

Table II presents the values of inaccuracy, error and 
accuracy estimates that we registered for each future 
prediction. It can be noted that, for both the gateway sensor 
nodes, the UAV pause occurs after the sixth prediction 
performed. The following prediction, which is based on past 
contact history, is therefore completely wrong, because the 
UAV returns in communications range after a much larger 
period of time. 

TABLE II.  FORECASTS EVALUATION PARAMETERS. 

Sensor Prediction Inaccuracy Error Accuracy 

1 0 0 1 

2 0.198 0 1 

3 0.039 0 1 

4 0.007 0 1 

5 0.356 0 1 

6 0.071 0 1 

7 43.78 41.78 7.2E-19 

8 8.754 6.754 1.17E-3 

9 1.750 0 1 

10 0.349 0 1 

11 0.069 0 1 

1 

12 0.013 0 1 

1 0 0 1 

2 1.483 0 1 

3 0.296 0 1 

4 0.059 0 1 

5 0.011 0 1 

6 0.002 0 1 

7 39.57 37.57 4.85E-17 

8 7.912 5.912 2.7E-3 

9 1.582 0 1 

10 0.316 0 1 

11 0.063 0 1 

12 0.012 0 1 

2 

13 0.002 0 1 



However, the algorithm proves robust to changes in 
mobility pattern of other nodes, and very reactive as well. In 
fact, only the first two predictions are wrong; after those, the 
values of forecasts return to be accurate. In addition, by 
providing accuracy estimates as well, the extended forecasting 
mechanism enables the development of adaptive dissemination 
strategies, that leverage on forecasts only when they are 
reliable and ignore them during reassessment periods. 

The third experiment aims at demonstrating how forecasts 
could be effectively exploited to save energy in those nodes 
that have a limited amount available. More specifically, we 
consider gateway sensor nodes that leverage on predictions for 
the next contact with UAV to save energy by entering a 
dormant state and waking up only when necessary.  

To evaluate the potential energy savings of adaptive 
beaconing techniques, we performed several simulations, 
recording for each one the number of times the gateway sensor 
wakes up to check for the UAV in a 30-minute interval. 
Results are shown in Table III. As expected, when increasing 
the tolerance the reliability of the predictions also increases 
and the number of checks needed decreases. 

Without exploiting forecast information, sensor nodes 
would have to continuously and frequently probe for the UAV 
presence, thereby remaining always active. Assuming periodic 
checks every 200 milliseconds would lead to 9000 checks in 
the 30-minute interval. Even considering the worst case, that 
of a null tolerance for the predictions, this leads to a very 
significant reduction in the number of controls, of 
approximately 95%. 

TABLE III.  CHECKS FOR UAV  PRESENCE PERFORMED. 

Tolerance (ms) Number of Checks 

0 459 

1000 430 

2000 405 

3000 403 

4000 389 

5000 379 

 

VIII.  RELATED WORK 

Several works have focused on opportunistic networking 
from the perspective of sharing resources, e.g., internet 
connectivity, between limited devices [5] [6]. Some of these 
have also studied social aspects that emerged from the 
contacts between nodes [7]. Other works have analyzed local 
link and mobility metrics in order to discover information 
about the state of the network and take advantage of it [8]. In 
this research area, several studies have addressed the problem 
of improving information dissemination on delay-tolerant 
vehicular networks or MANETs, by analyzing path likelihoods 
[9] or betweenness centrality [10]. 

DisService takes a different approach compared to the 
above mentioned research projects. In fact, it attempts to 
provide applications with reliable forecasts on future 
presences of highly mobile nodes in order to enable them to 

efficiently rely on message ferries to improve information 
dissemination. 

IX.  CONCLUSIONS AND FUTURE WORK 

The results presented in this paper demonstrate that 
contextualizing node mobility forecasts with additional 
information can effectively improve information 
dissemination. The extended forecast mechanism implemented 
by DisService effectively provides forecasts of future contacts 
with message ferrying nodes that are resilient to abrupt 
changes in mobility patterns. 

Future version of DisService will attempt to leverage 
contact information to try to infer further information about 
the network state and topology. For instance, the analysis of 
the number of different nodes encountered, and in particular of 
those encountered repeatedly, might produce valuable insights 
to further optimize the information dissemination processes.  
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