Exploring Continuous Optimization Solutions for
Business-driven IT Management Problems

Mauro Tortonesi
Department of Engineering
University of Ferrara
Ferrara, Italy
mauro.tortonesi @unife.it

Abstract—Business-driven IT management practices often
involve the performance optimization of a system according to
business criteria. The increased attention to dynamical aspects
of the system behavior, the preference for simulative approaches
rather than analytical ones, and the increased level of complexity
posed by business-driven performance evaluation significantly
complicate the optimization of BDIM systems and demand a
radical rethinking of methodologies and tools. This raises the
opportunity to devise and implement common methodology and
tools that could be used for a large class of different BDIM
optimization problems. This paper proposes a generic framework
for the dynamic and adaptive optimization of BDIM systems,
introduces the Open Source ruby-mhl metaheuristics library, and
provides an experimental evaluation in the context of a realistic
case study.

Keywords—Business-driven IT management (BDIM), IT service
management, optimization

I. INTRODUCTION

Business-driven IT management (BDIM) is a practice in IT
service management that attempts to evaluate and optimize the
IT infrastructure according to business criteria [1]. BDIM has
the ultimate objective of studying and optimizing an IT service
from the point of view of the service provider’s business
management, measuring both tangible and intangible business
costs.

Despite their advantages, BDIM approaches present some
peculiar challenges in optimizing a system operating condi-
tions. In fact, BDIM researchers need to deal with optimization
problems that involve complex solution spaces and target func-
tions that are rather expensive to compute (usually involving
one or more simulation runs), thus making traditional gradient-
based optimization solutions unfit. In addition, BDIM systems
have non-trivial dynamical aspects and their behavior changes
over time.

There is the need to explore optimization solutions that
are better suited than traditional mathematical optimization
to BDIM problems. More specifically, BDIM problems call
for continuous and adaptive optimization solutions, capable of
effectively exploring the large and complex space of feasible
system configurations to find the most convenient ones, and of
re-tuning the trade-off between exploration and exploitation.

For the purpose of this paper, we define as BDIM optimiza-
tion problems the subset of problems in the IT service manage-
ment research area that aim at optimizing the configuration,
i.e., the set of operating parameters, of a system according

to business criteria. The similarities between these problems
suggest the opportunity to investigate common methodology
and tools that could be applied to the widest range of different
BDIM systems. The present paper aims to be a first step in
this direction.

II. A FRAMEWORK FOR CONTINUOUS OPTIMIZATION IN
BDIM

We introduce a framework designed to consider all the
fundamental characteristics that BDIM optimization problems
exhibit: dynamic inputs; different (time-varying) operating
conditions; complex business impact evaluation procedures;
and reference configurations. The framework, whose architec-
ture is depicted in Fig. 1, implements an automated continuous
optimization of system, involving a feedback between the
optimization procedure and the system.

The Demand Model component generates a demand trace
according to user-specified rules, adopting stochastic processes
for the reenactement of the demand arrival process [2]. The
System Model component takes care of reenacting the system
and measuring how it would behave under different working
conditions. The Business Impact Analysis component is in
charge of evaluating the business impact of the current system
configuration z. The Optimization component implements the
optimization procedure, implementing algorithms that export a
set of parameters 6 that control the behavior of the optimization
procedure. By changing the value of 6, the optimization
algorithms can be tuned towards a more exploitative or a more
explorative behavior.

The Optimization component embeds a Controller module
that modulates 6 according to the performance (recently)
exhibited by the optimization procedure, with a feedback
control loop. For instance, in case the optimization algorithm
reaches a “plateau” in the possible solution space, in which no
improvement to the current solution could be found in several
past iterations of the algorithm, the Controller module could
decide to change the parameters 6 to alter the behavior of
the optimization algorithm to favor the exploration of different
portions of the solution space. Instead, if the controller detects
a significant improvement in the last iterations of the algorithm
related to a the exploitation of a specific portion of the solution
space, it could decide to change the parameters € to alter the
behavior of the optimization algorithm to favor the local search
close to the best solutions recently found (“exploitation”).

As a new solution z is found, it is fed to a Decision

Making component that might decide to change the operating
conditions of the system to improve its performance. The
Decision Making component would be ideally connected to
an actuator that could change the current system from zg to x
(also resetting the value of xy parameter).

Problem-specific rules

r
it 1
Demand Model BI, (x)
. X
Business Impact
Analysis

Objective function

Decision

Controller making

Optimization

Fig. 1. A framework for continuous optimization in BDIM

III. METAHEURISTICS FOR BDIM OPTIMIZATION

Genetic Algorithms (GAs) [3] and Particle Swarm Opti-
mization (PSO) [4] based metaheuristics are particularly well
suited for the optimization of dynamic and non-smooth target
functions.

Genetic Algorithms are inspired to biological evolution:
they define a population of individuals, each one representing
a specific coordinate on the search space and having a “fit-
ness” value. Through mating operators, including selection,
recombination, and mutation, the genetic material is evolved
through several generations, to find the fittest individuals that
represent better solutions to the problem at hand. GAs have
several desirable properties in BDIM optimization. By acting
on the parameters that control the behavior of their mutation
and selection operators, GAs can relatively easily be tuned
towards more explorative or more exploitative behaviors [5].

PSO is a swarm intelligence technique inspired to the
behaviour of bird flocks, which also integrates rather well
within a continuous optimization framework [6]. Traditional
PSO is a relatively simple to implement optimization algorithm
that, however, unlike GAs presents a few critical aspects, such
as lower resilience to early convergence [4] and a more difficult
parameter tuning process. Improved versions of the algorithm
such as Quantum-based PSO and variants of PSO based on
multiple swarms have later emerged to addressed these issues.

Population-based metaheuristics, such as GAs and PSO,
are well suited for the optimization of dynamic systems,
like BDIM ones. In fact, the population maintained by the
algorithms represents the “memory” of the search process. In
case of changes in the system input or inner working (such as
when one or more support groups in an IT support organization
transition from daily to nightly shift), the population members
of the last generation evaluated represent a good “priming” for
the next optimization round. At the same time, the exploration
capability of GAs and PSO can be ensured by the adoption of
operators that increase the population diversity.

TABLE L TRANSITION MATRIX USED IN THE EXPERIMENTS

From/To | SGI [SG2 [sG3 | sG4 | sG5 | sG6 [SG7 [sG8 | Out |

In 1 2 43 2 2 3 2 1 0
SGl1 0 2 2 6 1 13 1 4 2
SG2 2 0 3 4 2 3 6 1 1
SG3 5 21 0 2 3 34 2 2 4
SG4 1 4 4 0 2 3 2 1 7
SG5 2 2 1 5 0 1 1 3 3
SG6 3 2 6 0 2 0 2 4 1
SG7 1 8 3 2 2 3 0 1 2
SG8 3 8 1 0 5 1 34 0 14
TABLE II. SUPPORT GROUP CONFIGURATION FOR THE EXPERIMENTS

l Name [Timezone Mean service time (seconds)

SG1 BRST 1114.00

SG2 BRST 1980.00

SG3 EDT 4099.00

SG4 CEST 4979.00

SG5 CEST 2760.00

SG6 IST 7631.00

SG7 IST 2170.00

SG8 IST 9220.00

IV. EXPERIMENTAL EVALUATION

To evaluate how our framework, we created a realistic IT
support organization model and we set up to its optimization.
We considered an enterprise class service, with 8 support
groups dislocated in 4 locations: Brazil (2 support groups),
east coast of the USA (1 support group), central Europe (2
support groups), and India (3 support groups). We assumed
that in every support group operators worked a 8 hour shift,
from 9AM to 5PM local time.

We adopted Symian, a state-of-the-art simulator which
we developed in the context of our research [7] and that
we recently released as Open Source at https://github.com/
mtortonesi/symian. Symian models IT support ogranizations
as an open queuing network, renacting each support group
as a queue with a specific service discipline and the incident
escalation process through a Markov transition probability
matrix. More specifically, for these experiments we used the
(unnormalized) transition probability matrix presented in Table
I. In the attempt of producing an experiment as realistic as
possible, the matrix was randomly generated by sampling from
a reshaped empirical probability distribution obtained from a
dataset containing information on incidents from a real-life
enterprise class IT support organization.

Support groups are modeled as a G/M/s-FIFO queue with
a specific mean service time [7]. In turn, operators have
different annual salaries: $30,000.00 for the operators work-
ing in Europe, $25,000.00 for operators working in USA,
$20,000.00 for operators working in Brazil, and $ 15,000.00
for operators working in India. We do not consider other
costs, such as equipment for operators, that we assume are
significantly smaller and thus could be ignored for the purpose
of these experiments. Table II summarizes the support groups
characteristics. For contracting costs, we considered the SLA
defined in Table III.

We also considered an additional component to evaluate
the cost of performance drifts in system configuration:

TABLE III. SLA CONSIDERED FOR THE EXPERIMENTS

KPI [Target Penalty (per month)
Mean Time To Resolution (TTR) < 10days $ 300, 000.00
Max Time To Resolution (TTR) < 28days $ 360, 000.00

2 mied — b tmi
Carift = $120,000.00 * = arctan <m cd — targe Cd)
s

10 x targetmica

where m,,;.q 1 the value of the number of incidents closed
per day metric obtained when evaluating the new IT support
organization configuration and target,,;.q is the reference
value of the same metric, obtained from the evaluation of
the configuration currently in place. By evaluating the system
in the reference configuration with 10 simulation rounds we
obtained a value of target,,;cq = 31.5, which we used for all
the experiments.

To reenact the incident arrival process, we adopted a
stochastic model based on the Generalized Pareto distribution:

17[1+@}_% for € £ 0

l—e =" for £ =0

Flepo (@) =

and we selected the location ¢ = 1000.0 (seconds), scale
o = 200.0 (seconds), and shape & = 0.75 parameters in order
to have a mean time between two incident arrivals of 1800
seconds (30 minutes), and infinite variance. We chose this
model because it represents an acceptable tradeoff between
simplicity and realistic modeling [2].

A. Results

We first run a baseline experiment to optimize the IT
support organization using GAs and PSO. To this end, we
adopted a rather straightforward integer vector representation
for the population individuals used in the algorithms. More
specifically, each individual was represented as an integer
vector whose cells contain the number of operators allocated
for each support group. For GAs, we used populations of
100 individuals and stopped the optimization process after 20
generations. For PSO, we considered a swarm of 40 particles
and stopped the optimization process after 50 generations. The
GA and PSO implementations used in these experiments are
available in the ruby-mhl library, that we released as Open
Source: https://github.com/mtortonesi/ruby-mhl.

We used two different versions of GAs in the optimization,
in both cases adopting a mutation operator that randomly
samples from a geometric distribution. In the first version we
used a fixed mutation probability parameter p,,, = 0.4 while in
the second version we used an adaptive mutation probability
parameter, controlled by the Rechenberg algorithm [6].

Fig. 2 and 3 present the results we obtained with GAs
and PSO respectively. The figures depict the business impact
calculated on the best sample of the population corrisponding
to the generation indicated in the x axis. Fig. 2 shows that,
despite the luckier start of the GA version with fixed mutation
probability (we primed the two GA optimization runs using

different randomly sampled populations), the GA version using
adaptive mutation probability seems to exhibit a more consis-
tently improving behavior. However, Fig. 3 shows that PSO
performs much better than GAs in this particular optimization
problem, as it converges towards a better optimal solution
(with a value of $22,493 compared to $28, 712 and $24, 643
returned by GAs) and with a significantly faster pace.

We then launched a second experiment, simulating a 5%
increase in demand with respect to the baseline conditions of
the first experiment, by changing the location parameter of the
GPD distribution to the value p* = 914.29, while preserving
the previous values for the scale and shape parameters. This
time we used three different versions of GAs. In the first
version, we set fixed mutation probability p,, = 0.4 while
in the second version we adopted a hypermutation strategy to
quickly increase population diversity in the attempt to speed
up the optimization process. In both cases, we primed the
algorithm using as the initial populations the ones evolved as
the last generation in the two baseline optimization experiment
runs, with fixed and adaptive mutation probability respectively.

Hypermutation is a dynamic optimization strategy devel-
oped in the context of immune artificial systems research
and inspired to the behavior of biological cells, that tend to
aggressively increase their mutations in response to stressful
changes in their environment [8]. The hypermutation strat-
egy we implemented in our GA responds to changes by
immediately setting the value of the parameter to a more
aggressive value of the mutation probability parameter (in our
case HM = 0.3), thus increasing the intensity of mutations
and causing the GA population to enter a “hypermutation”
state. As reported in literature [9], this is a relatively simple but
very effective strategy. After resetting the mutation probability
parameter to the H M threshold, the GA resumed running with
an adaptive mutation probability parameter modulated by a
Rechenberg controller.

Finally, in the third version of GA we adopted a naive
approach restarting the algorithm from a randomly sampled
population and using a fixed mutation probability parameter
pm = 0.4.

We also used two different versions of PSO. In the first
one we primed the algorithm using as the starting particle
swarm the one obtained from the last generation of the PSO
algorithm in the baseline optimization experiment, and priming
the algorithm from a random particle swarm. In both cases, we
inizialized the particles with random velocities.

Fig. 4 and 5 present the results we obtained with GAs
and PSO respectively. Both the figures clearly demonstrate
the advantage of priming the algorithms with a population
obtained from the optimization of the system when operating
in a previous state. Fig. 4 also shows that the adoption of
the hypermutation strategy makes the GA relatively quicker in
finding better locations in the search space at first. However,
let us note that the GA version with random population restart
exhibited a slower improvement pace but higher search reso-
lution, ending up exploring a portion of the search space that
proved better than the ones explored by the primed versions
of the GA.

Finally, PSO significantly outperformed GAs in this exper-
iment as well, obtaining a best configuration corresponding to

a business impact of $5,863 against the $21,041 of the best
configuration returned by GA. This motivates us to further
investigate the adoption of PSO in our future research, also
exploring adaptive and advanced versions of the algorithm.

Adaptive mutation Fixed mutation

v \/\\/\\\/\/\/_\A

20
Generation

Fig. 2. Results of the baseline optimization using GA.

60000 -

% 50000 -
2
3 40000 -
o
o
30000 -
) | |]] i
0 10 20 40 50
Generation
Fig. 3. Results of the baseline optimization using PSO.
Fixed mutation Hypermutation Restart
50000 -
40000 -
7]
>
=/30000 -
[72]
] v\’_'\/\’\’\ \/_\\
o 20000 -

| | | | | | | | | | | |
5 10 15 20 5 10 15 20 5 10 15 20

Generation

Fig. 4. Results of the optimization with 5% higher workload using GA.

Continue Restart

A'}U’,‘UU -

a

%)

240000 -

@

o

© 20000 - L

0 10 20 30 0 50 0 10 20 30 40 5¢
Generation
Fig. 5. Results of the optimization with 5% higher workload using PSO.

V. RELATED WORK

In network and system management, researchers are in-
creasingly turning towards computational intelligence methods
for the optimization of the systems they study. The formerly
cited works [10] and [11] attempt to optimize the placement
of software components in federated Cloud environments,
respectively using a traditional GA and a memetic algorithm
based on GA with integer vector representation.

A recent work by Moens et al. presents an interesting
comparison between a traditional ILP optimization method

with genetic algorithm and particle swarm optimization [12].
The authors conclude that the guarantee of finding the best
solution of the problem provided by ILP is well offseted by
its scaling issues as the problem dimension grows larger.

However, most of those works focus on the (static) op-
timization of systems operating in steady-state, and do not
consider the dynamic system behaviors. This paper represents
a modest attempt to push forward the state of the art, by
introducing a framework and releasing software tools for dy-
namic optimization problems, designed for BDIM but broadly
applicable to other areas of network and system management.

VI. CONCLUSIONS AND FUTURE WORKS

Optimization solutions based on computational intelligence
methods represent very interesting tools for BDIM, and for
many other optimization problems in network and service
management research. There is the need to investigate further
the possibilities offered by the adoption of those methods in
a framework for dynamic and adaptive optimization such as
the one presented in this paper. In particular, robust and ad-
vanced control solutions to tune the parameters of optimization
algorithms are a very interesting research avenue.

REFERENCES

[1] A. Moura, J. Sauve, and C. Bartolini, “Business-driven IT management
- upping the ante of IT: exploring the linkage between IT and business
to improve both IT and business results,” Communications Magazine,
IEEE, vol. 46, no. 10, pp. 148-153, October 2008.

[2] C. Bartolini, C. Stefanelli, and M. Tortonesi, “Synthetic incident gener-
ation in the reenactment of IT support organization behavior,” in Inte-
grated Network Management (IM 2013), 2013 IFIP/IEEE International
Symposium on. 1EEE, 2013, pp. 126-133.

[31 S. Luke, Essentials of Metaheuristics, 2nd ed. Lulu, 2013, available
for free at http://cs.gmu.edu/~sean/book/metaheuristics/.

[4] J. Sun, C.-H. Lai, and X.-J. Wu, Particle Swarm Optimisation: Classical
and Quantum Perspectives. CRC Press, 2011.

[5] M. érepin§ek, S.-H. Liu, and M. Mernik, “Exploration and exploitation
in evolutionary algorithms: A survey,” ACM Comput. Surv., vol. 45,
no. 3, pp. 35:1-35:33, Jul. 2013.

[6] O. Kramer, A Brief Introduction to Continuous Evolutionary Optimiza-
tion. Springer, 2013.

[7]1 C. Bartolini, C. Stefanelli, and M. Tortonesi, “SYMIAN: Analysis and
performance improvement of the IT incident management process,’
IEEE Transactions on Network and Service Management, vol. 7, no. 3,
pp- 132-144, 2010.

[8] H. G. Cobb, “An Investigation into the Use of Hypermutation as an
Adaptive Operator in Genetic Algorithms Having Continuous, Time-
Dependent Nonstationary Environments,” Naval Research Lab, Wash-
ington, D.C., USA, Tech. Rep. 6760 (NLR Memorandum), 1990.

[9] T. T. Nguyen, S. Yang, and J. Branke, “Evolutionary dynamic opti-
mization: A survey of the state of the art”,” Swarm and Evolutionary
Computation, vol. 6, no. 0, pp. 1-24, 2012.

[10] L. Foschini and M. Tortonesi, “Adaptive and business-driven service
placement in federated Cloud computing environments,” in Integrated
Network Management (IM 2013), 2013 IFIP/IEEE International Sym-
posium on. 1EEE, 2013, pp. 1245-1251.

[11] G. Grabarnik, M. Tortonesi, and L. Shwartz, “Business-Driven Opti-
mization of Component Placement for Complex Services in Federated

Clouds,” in Network Operations and Management Symposium (NOMS
2014), 2014 IEEE/IFIP. 1EEE, 2014, pp. 1-9.

[12] H. Moens, B. Hanssens, B. Dhoedt, and F. De Turck, “Hierarchical
Network-Aware Placement of Service Oriented Applications in Clouds,”
in Network Operations and Management Symposium (NOMS 2014),
2014 IEEE/IFIP. 1EEE, 2014, pp. 1-9.

