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Enabling the Deployment of COTS Applications 
in Tactical Edge Networks

Abstract
The increasing adoption of COTS hardware and software technologies in tactical scenarios 
raises the issue of supporting the deployment of legacy and COTS applications in extremely 
dynamic and challenging environments such as Tactical Edge Networks (TENs). COTS 
applications adopt standards devised for wired Internet environments or corporate networks, 
such as Service Oriented Architectures, and TCP and UDP , thus exhibiting severe reliability 
and performance problems on TENs. To support the reuse and the deployment of COTS 
applications in TENs, there is the need to develop solutions that mediate the application 
requirements with the communication semantics of TENs. This article presents an overview of 
the challenges in deploying COTS applications in TENs and presents NetProxy, a state-of-the-
art solution explicitly designed to address them.

1. Introduction
There is a growing interest in adopting Commercial Off-The-Shelf (COTS) hardware and 
software technologies in military application environments, such as Tactical Edge Networks 
(TENs) [1]. In fact, the adoption of COTS technologies enables reaping the benefits of 
economies of scale, and facilitates and hastens the development and deployment of complex 
distributed applications by leveraging robust and widely adopted standards and software 
components.

Legacy and COTS applications were (and sometimes continue to be) developed using 
standards devised for wired Internet environments or corporate networks, such as Service 
Oriented Architectures (SOAs) and other web-inspired technologies, and TCP and UDP. When 
these applications are deployed on TENs, their performance is significantly degraded. In fact, 
the reliance on Web protocols results in excessive bandwidth utilization in an environment 
where bandwidth is already scarce. Reliance on TCP results in decreased throughput, 
decreased bandwidth, and other failures such as connection resets.

In order to support the deployment and reuse of COTS and legacy applications in tactical 
environments, there is a need to develop solutions that mediate between the communication 
semantics required by the applications and those that can be reasonably supported by TENs. 
More specifically, the tactical scenario demands an intelligent substrate that transparently 
captures the data transmitted by the applications, manipulates it to reduce its footprint, and re-
maps it over TEN-specific communication solutions.



This article presents an analysis of the challenges in deploying COTS applications in TENs, 
which motivated us to develop NetProxy, a state-of-the-art solution explicitly designed to 
address those issues. NetProxy was originally introduced in [2], which focuses on technical 
aspects of the tool such as its architecture and implementation, and later extended for the 
present work. NetProxy is a component of the Agile Computing Middleware, a comprehensive 
communications solution we designed to support the development of distributed applications for 
TENs [3].

We note that while the performance and reliability of COTS applications is also a relevant issue 
with wireless and mobile ad hoc network environments, its importance in TENs is much more 
significant. As a result, we believe that this is an interesting research area that could lead to 
results with impact outside the military application environment. We hope that this article will 
attract the interest of researchers working in wireless communications and stimulate them to 
develop methodologies and solutions that push forward the state of the art.

2. COTS Applications and SOAs in Tactical Networks
The deployment of COTS and legacy applications in TENs presents many significant challenges 
related to the use of software architectures and communication protocols that are not suited for 
highly dynamic and unreliable networking environments. More specifically, the most significant 
problems exhibited by COTS applications originate from their reliance on SOAs and TCP.

SOA-based applications typically adopt client-server architectures with long-lived and 
(semi-)static bindings between software components. In fact, while the fundamental building 
block of SOAs is represented by short-lived operations, that is, synchronous Remote Procedure 
Calls (RPCs), usually SOA-based clients exploit information about server locations (e.g., 
obtained from WSDL documents) for several subsequent requests, thus leading to a relatively 
tight and brittle coupling between software components. This model is perfectly appropriate for 
LANs or wired Internet environments but that does not match the resilience and adaptivity 
requirements of TENs. In fact, applications running in TENs must deal with frequent 
disconnections for multiple reasons (nodes could move and fall out of communications range, 
networks may become partitioned, client devices may need to be temporarily shut down or stop 
network activity). In addition, TEN applications often need to switch to different service 
providers, exploiting new resources (e.g., Unmanned Aerial Vehicles, UAVs) as they come in 
topological proximity and, when possible, leveraging peer-to-peer (P2P) architectures and/or 
local replicas of data and services [3].

The coupling between components in SOA-based applications can be loosened via the adoption 
of enterprise message buses (EMBs) that also reduce the risk of building stove-piped systems. 
However, the reliance on COTS messaging systems and protocols results in applications that 
fall short of matching the needs of TENs. In fact, COTS solutions such as JGroups 
(http://www.jgroups.org/) and Advanced Message Queuing Protocol (AMQP)-based middleware 



being proposed and adopted in TENs were not designed to withstand temporary network 
disconnections between components without disrupting service sessions or to support the 
opportunistic exploitation of resources.

In addition, SOA-based technologies adopt application protocols, e.g., HTTP, and middleware 
that hinder the adoption of performance optimizations such as request aggregation and/or 
pipelining and reuse of trasport-layer connections. SOA-based applications also make heavy 
use of verbose and bandwidth-expensive XML-based data representation protocols that are an 
excessive burden for TENs.

The Marine Corps Systems Command’s Marine Air Ground Task Force (MAGTF) Command & 
Control (C2) Systems & Applications (SA) Service-oriented Infrastructure (SOI) represents an 
illustrative example of how difficult it is to run SOA-based applications in TENs. SOI relies on 
the JBoss middleware and on various enterprise message buses. Applications typically 
integrate with SOI using Apache Qpid, a cross-platform Advanced Message Queueing Protocol 
(AMQP)-based messaging middleware, conveying all messages over TCP. Therefore, when 
running on a TEN, those applications will either not function or provide poor performance when 
communicating with SOI.

These considerations led to the development of SOA-specific solutions, such as DSProxy [4], 
that facilitate the deployment of SOA-based COTS applications in TENs by operating as 
adapters between the applications and military grade store-and-forward communication 
solutions, such as the X400-based STANAG 4406 messaging system, and techniques, e.g., 
request optimization and distributed caching, that improve the applications’ fault-tolerance and 
performance.

However, while proxy-based adaptation has proved to be a very effective technique for enabling 
the deployment of SOA-based COTS application in military environments, SOA-specific 
approaches present several significant drawbacks. More specifically, SOA-specific adapters 
such as DSProxy do not consider non-SOA-based COTS and legacy applications and only 
focus on the optimization of application-level protocols.

Instead, there is the opportunity to improve the performance of COTS applications by 
applying communication optimization techniques that operate contextually at both the 
application and transport levels. This is particulary important in COTS applications that 
perform long service sessions and adopt transport-level communication semantics based 
on the reliable stream model provided by TCP.

The reliable stream model is not compatible with the “always exploit the best connection” 
operational mode, which is a fundamental requirement for TENs. In fact, nodes in a TEN often 
have more than one communication link; for example, a slow but reliable third generation (3G) 
connection, a SATCOM connection that may not work in bad weather, and/or a faster local 
connection (e.g., to an airborne relay node), which is not always available. To achieve the best 
performance, applications (and the middleware) need to dynamically switch between the 



available links to exploit the best connectivity. However, TCP-based applications are not 
capable of dynamically switching service sessions between different network interfaces, thus 
forcing users to manually shut down service sessions and restart them in order to take 
advantage of faster (and cheaper) links when available. Note that while similar issues are also 
actively studied in Third Generation Project Partnership (3GPP) networks [5], the need to 
always exploit the best connection in TENs is an even more important and complex issue due to 
the wide heterogeneity of link types.

In fact, the mismatch between the semantics of transport-layer protocols upon which COTS 
applications are built and those that could be reasonably provided over TENs also represents a 
major issue. At the transport protocol level, COTS applications leverage the semantics 
proposed by commonly used protocols, such as TCP and UDP, which provide reliable and 
sequenced delivery of a stream of data and unreliable unsequenced delivery of messages, 
respectively.

TCP and similar protocols are also very inefficient in highly dynamic environments such as 
TENs. In fact, TCP implements a single first in-first out (FIFO) transmission queue and does not 
enable applications to liberate the queue from stale data waiting for (re)transmission (an 
operation that the stream-oriented nature of TCP, which does not preserve the boundaries 
between messages, would also make rather difficult to implement). In cases where the 
information generation rate outpaces the network capability, this limitation forces the 
transmission of obsolete messages, significantly reducing the applications’ goodput. The 
negative impact of the TCP queuing model on latency is also well recognized also in wired 
Internet environments [6]. However, these issues are further exacerbated in TEN applications 
by the time-sensitive and multiple-priority nature of traffic, and by the adoption of peculiar and 
high-latency communication solutions, such as tactical radio links with DAMA modulation that 
implement two-party communications over unidirectional links.

In addition, in wireless environments, TCP implementations often misinterpret packet losses 
(caused by higher channel error-rate, medium contention/collision, and/or node mobility) as 
congestion symptoms and consequently trigger congestion control mechanisms that 
significantly reduce the transmission rate. This approach leaves the wireless channel 
underutilized and generates traffic flows with lower throughput and higher latency than the 
network is actually capable of delivering.

At the other end of the spectrum, UDP does not provide reliability levels or flexible mechanisms 
for group communications suited for TEN communications. In fact, the best-effort delivery 
semantics implemented by UDP places the burden of ensuring the delivery of important 
messages on the applications, for instance by implementing ad hoc retransmission schemes. 
UDP broadcast communications are also inadequate as a basic mechanism for group 
communication in TENs, which instead call for disruption-tolerant communication schemes.

The limitations of TCP and UDP have a major impact on COTS and legacy tactical applications 
that typically leverage TCP for reliable end-to-end communication and UDP for best effort 



broadcast/multicast communications. An example of these legacy applications is GeoChat, a 
multi-user chat application that is part of the Air Force Special Operations Command’s 
Battlefield Air Operations (BAO) Kit. GeoChat uses TCP for file exchange, incurring relatively 
frequent failures and low performance, and UDP multicast for chat messages, incurring frequent 
loss of messages.

Instead, TEN applications are better served by communication solutions that provide a wider 
range of delivery semantics, thus enabling the differentiation of delivery mechanisms according 
to the importance of the messages being transmitted. In particular, reliable and sequenced 
delivery (as provided by TCP) is very expensive and should be used only when absolutely 
necessary. The importance of providing customizable delivery mechanisms in wireless 
environments is widely recognized, as demonstrated by recent research efforts on SCTP, which 
supports multiple streams, multiple associations, and partial reliability mechanisms [7]. In fact, 
state-of-the-art TEN-specific communication solutions recognize the need for smart buffer 
management and go beyond the features provided by SCTP by also enabling fine-grained 
control of message delivery semantics and mobile service sessions [1].

Finally, the limited bandwidth available for communications in the tactical environment requires 
applications to adopt communication schemes that are as efficient as possible. However, COTS 
applications were typically designed for wired Internet environments with the assumptions of 
having frequent and evenly distributed transmission opportunities and low round-trip times. As a 
result, they often implement rather simple communications schemes that do not adopt any 
optimization, for example, by aggregating or parallelizing requests or reusing already 
established connections for following requests [8]. These assumptions do not hold in TENs, thus 
leading to very poor performance results.

3. Bridging the Impedance Mismatch
Running COTS applications on top of communication solutions specifically designed for TENs is 
often impossible or impractical, as it requires modifications to the applications’ source code. 
Clearly, this approach cannot be applied to third party or legacy software, because either the 
applications’ source code is not available or the required modifications would be too expensive.

Instead, an interesting approach relies on the development of specific adaptation components 
or middleware to enable the deployment of COTS and legacy applications over TEN-specific 
communication solutions. This approach follows a school of research, dating as far back as 
1995, with proposals such as I-TCP [9], Mobile-TCP [10], and the Remote Sockets Architecture 
[11], which investigates proxy-based architectures to address both the performance and mobility 
issues that TCP exhibits in wireless networks. More recent proposals, such as A3[12], suggest 
the adoption of transparent proxies and sophisticated buffer and message management 
solutions to accelerate TCP-based applications in wireless environments.



Despite their interesting potential, so far proxy-based solutions have mostly focused on the 
application performance improvements instead of on the adaptation between different 
communication models and/or protocols. In addition, those solutions have received limited 
interest from researchers, who instead have preferred to focus on the development of new 
protocols or wireless-friendly TCP implementations. However, the deployment of COTS and 
legacy applications on TENs calls for an intelligent substrate that lies between COTS 
applications and TEN-specific communication solutions, thus making proxy-based solutions a 
key technology to bridge the impedance mismatch between these two software layers.

More specifically, the adaptation substrate should use proxy components to implement the 
transparent remapping of traditional TCP- (or UDP-) based communication semantics, adopted 
by COTS applications, to TEN communication middleware, e.g., for information dissemination or 
for mobile sessions support. At the receiver side, another proxy instance should translate the 
received data back to the applications through a TCP- (or UDP-) based interface.

The proxy-based approach has the advantage of being application-transparent. It works with 
COTS applications without requiring any modifications and without breaking the expected TCP- 
or UDP-based communication semantics. It also does not leak any abstraction or concept of 
TEN-specific communication solutions to the higher software layers. By providing adaptation 
features at the proxy level, all applications can immediately benefit from the functions provided 
by communication solutions explicitly designed for TENs without any modification.

At the same time, the proxy-based approach enables the realization of an adaptation substrate 
that is both application-aware and network-aware, which can therefore put in place specific 
solutions to optimize communications according to the specific COTS application requirements 
(or semantics) and the current operating conditions. For instance, for some applications, it could 
leverage peer-to-peer (P2P) communications or opportunistic information dissemination 
solutions. For other applications, it could tailor the communications according to the current 
state of the network, prioritizing the transmission of essential messages and discarding (or 
deprioritizing) messages of secondary importance according to the available bandwidth.

Therefore, the proxy-based approach represents a very effective solution that is particularly well 
suited to support the deployment of COTS and legacy applications in TENs.

4. The Agile Computing Middleware NetProxy Solution
Following the approach described in the previous Section, we designed NetProxy, a solution 
that transparently intercepts any (TCP- or UDP-based) network traffic generated by COTS 
applications, analyzes it, and conveys it over point-to-point connections and/or point-to-
multipoint information dissemination channels provided by the Mockets and DisService 
communication middlewares.



The Mockets middleware is a communication solution explicitly designed to address the issues 
that the standard communication protocols, such as TCP and UDP, exhibit on TENs. Mockets 
enables the smart management of transmission buffers, allowing applications to exploit different 
delivery semantics and transmission priorities for different classes of messages, discard 
obsolete data in the transmission queue, and so on. In addition, Mockets supports session 
mobility and dynamic service rebinding, and implements mechanisms that monitor the current 
network state and export that state to the applications, enabling them to detect connection loss, 
monitor network performance, and react accordingly (e.g., by tailoring their Quality of Service). 
Unlike TCP, the Mockets middleware does not assume to operate over low-error rate channels, 
but implements an adaptable congestion control mechanism that is specifically devised for the 
challenges that are characteristic of the mobile ad hoc environment. Additional details on the 
improved performance of Mockets on TENs are described in [1]. The challenge, addressed by 
the NetProxy described in this article, is enabling COTS and Legacy applications to benefit from 
Mockets withouth having to modify them.

DisService, on the other hand, is a P2P information dissemination solution specifically designed 
to support dynamic network topologies and highly mobile nodes such as UAVs [3, 13]. 
DisService enables nodes to participate in multiple groups of interest, which communicate 
through independent information dissemination channels (subscriptions), thereby supporting the 
multiple patterns of data dissemination required by tactical applications. DisService enables 
disruption-tolerant information dissemination and relies on store-and-forward communications, 
aggressive distributed data caching, and opportunistic resource (communications, storage, and 
processing capacity) management to improve the performance of the information dissemination 
process. DisService also implements an adaptive contact prediction mechanism that detects 
recurrent mobility patterns of highly dynamic nodes, such as UAVs loitering over the battlefield, 
and uses this knowledge to optimize the information dissemination process.

Mockets and DisService represent complementary solutions that address a large number of the 
communication requirements in TEN environments. NetProxy, whose architecture is depicted in 
Figure 1, relies on Mockets and DisService to provide COTS applications with communication 
solutions well suited for TENs. Mockets, DisService, and NetProxy are components of the Agile 
Computing Middleware.

More specifically, NetProxy operates transparently to COTS applications by capturing their TCP 
and UDP packets, extracting their payload, processing the data according to the application-
specific traffic management configuration, and handing them over to Mockets or DisService for 
efficient delivery to the destination. At the receiver side, another instance of NetProxy performs 
the inverse task. NetProxy also supports temporary disconnection, stream compression, and 
network activity logging.

While the proxy-based approach introduces some overhead, our experience demonstrates that 
the performance gains stemming from more efficient and target-appropriate protocols 
significantly outweigh the computational burden and lead to major performance improvements 



overall. In addition, NetProxy enables devising sophisticated application-specific optimizations 
that can improve the performance of COTS applications even further.

4.1. Conveying COTS Applications’ Traffic over TEN-Specific Communication 
Solutions

To optimize the performance of COTS applications on TENs, NetProxy provides traffic 
manipulation functions and enables implementation of user-defined policies for the smart 
management of traffic. This allows addressing the many requirements that COTS applications 
might have.

More specifically, users can configure NetProxy with policies that target specific 
communications (e.g., depending on the type of traffic, the protocol being utilized, or the 
source/destination addresses). Policies can be dynamically updated at runtime, without stopping 
and restarting running applications. This provides a standard and centralized configuration point 
for all the functionalities provided by NetProxy, allowing for faster and easier management of the 
communication flows in the network.

NetProxy supports many different traffic manipulation functions. For instance, NetProxy allows 
the forwarding of traffic over a Mockets service session, a DisService subscription, or both. This 
might be suited for COTS applications that issue notifications to a server, as it helps to 
disseminate information to other nodes that might be interested.

In addition, by leveraging the session mobility feature provided by Mockets, NetProxy can 
transparently rebind local service session endpoints to a different network interface, taking 
advantage of faster (and cheaper) links when available. This addresses the issues of 
deployment scenarios, commonly found in TENs, where nodes have several links (e.g., 
SATCOM, 3G, airborne relay, and/or Wi-Fi) and need to switch between them to exploit the best 
possible connectivity.

NetProxy also provides application-specific mechanisms that significantly improve the 
applications’ robustness and performance through relatively straightforward reconfigurations or 
modifications. In fact, while for some applications the simple adoption of generic solutions (e.g., 
standard data compression mechanisms) will deliver significant performance improvements, 
other applications might require specific and more sophisticated schemes.

NetProxy enables the performance optimization of important applications through the definition 
and implementation of application-specific management policies/configurations and the 
development of dedicated acceleration plugins. Plugins have to provide a set of rules that 
enable NetProxy to identify the traffic belonging to the applications for which they are designed 
and to implement a simple callback interface that enables them to integrate with the NetProxy 
traffic manipulation function.



A particularly interesting optimization technique involves the adoption of application-specific 
transcoding and compression schemes. For instance, it is often possible to reduce the size of 
request and response messages of COTS applications that rely heavily on XML by switching to 
more efficient data representation and document formats, such as JavaScript Object Notation 
(JSON). In addition, compression of message content before the actual transmission is often a 
very effective way to reduce bandwidth consumption. However, some applications cannot adopt 
generic full-payload compression schemes. This is especially true with HTTP-based 
applications that often have to traverse middleboxes such as load balancers that operate on the 
assumption that HTTP headers are readable and quickly accessible. The adoption of generic 
compression schemes would break these distributed application setups, which instead call for 
application- (or, more precisely, protocol-) specific compression schemes. In addition, 
compression schemes need to be deployed on a case by case basis, as sometimes they might 
increase latency and, with resource constrained clients, may be computationally too expensive.

Another very compelling application-specific optimization involves request optimization. By 
developing application-specific plugins that leverage knowledge about the communication 
semantics of COTS applications, it is possible to optimize the applications’ performance by 
automating the transmission of requests that the COTS application is likely to perform, or 
implementing request desequencing/parallelization schemes.

Application-specific plugins could also be used to enhance the applications’ resilience and fault-
tolerance. For instance, applicable plugins could act as adapters that provide a more robust 
service interface in front of existing services. This could turn stateful interactions in a series of 
idempotent operations, which are widely recognized as a fundamental tool to implement resilient 
services [14].

In addition, NetProxy enables sophisticated network-aware traffic management policies that 
permit enforcing different delivery mechanisms and priorities according to the specific type of 
traffic and the current network condition. For instance, if the quality of the communication link 
degrades, NetProxy can be configured to enforce reliable delivery only for critically important 
messages while transmitting all the other messages in a best-effort fashion, or discarding them 
after the expiration of the lifetime or maximum retransmission count attribute associated with the 
messages. When the network conditions improve, NetProxy might resume using reliable 
delivery for each message that is transmitted.

Finally, NetProxy facilitates the reuse of existing connections for multiplexing multiple 
connections at the application level. While this might seem a rather straightforward optimization, 
in our experience it often leads to significant performance optimization, as demonstrated by the 
first experiment presented in the next Section.



Figure 1. NetProxy architecture and interface with applications and lower level-communication solutions.

5. Experimental Results
To demonstrate the effectiveness of proxy-based solutions to support the deployment of COTS 
applications in TENs, we present the results obtained from two different experiments. The 
experiments are designed to reproduce and illustrate common issues that COTS applications 
exhibit in TENs.
 
To evaluate the performance of the combined use of the NetProxy and Mockets middleware, 
and to compare this solution to TCP, we ran the experiments in an emulated environment, 
which allowed us to reproduce the characteristics of a TEN. More specifically, we used an 
enhanced version of the Mobile Ad-hoc Network Emulator (MANE) [15], a tool designed to 
reproduce the characteristics of unreliable environments such as TENs, to set up the 
connectivity between the nodes involved in the testing.

The nodes are part of the NOMADS testbed, which comprises 96 servers connected through a 
100Mbps Ethernet LAN. The hardware configuration of the machines consists of HP DL140 
Servers (Dual Xeon Dual Core CPUs at 3.06Ghz, with 4GB of RAM). MANE can control 
bandwidth, latency, and reliability for each link, thus allowing the evaluation of different systems 



and protocols in a reproducible, laboratory controlled environment. The reliability parameter is 
based on the packet error rate (PER); hence, a 90 percent reliability value is equal to a 10 
percent PER value.

For the first experiment, we wrote a simple client application that generates an HTTP SOAP 
request, sends it to a Web Server located on another node of the testbed, and waits for the 
response. The application was also responsible for measuring the throughput. We kept the 
bandwidth of the link stable at the value of 1 Mb/s throughout the experiment, while we 
considered the reliability values of 87, 90, 93 and 95 percent. We configured the client 
application to repeat the request 50 times with the same link conditions before we modified the 
configuration of MANE to vary the reliability of the link.

Figure 2 shows the results obtained by running the experiment described above connecting 
client and server using TCP, TCP via NetProxy, or Mockets via NetProxy. The higher 
throughput achieved by Mockets and NetProxy clearly stands out from the graph. It is also worth 
noting that TCP via NetProxy performs better than plain TCP. The reasons of this behavior are 
manyfold. First of all, many standard SOAP implementations, such as Apache Axis 2 
(http://axis.apache.org/axis2/java/core/), by default send every SOAP request using a separate 
TCP connection. This means that a large portion of the traffic is sent during the TCP slow start 
phase, which significantly limits bandwidth usage. This issue does not occur with NetProxy, 
which multiplexes all the traffic directed to a single node onto the same connection, reusing it for 
following request. Furthermore, NetProxy has a buffering mechanism that allows the generation 
of larger TCP segments, therefore reducing the protocol overhead.



Figure 2. Measured throughput running the experiment with: a) TCP; b) TCP via NetProxy; c) Mockets via 
NetProxy.

Figure 3 shows the results obtained running the same experiment after enabling the 
compression feature of NetProxy. We used Mockets via NetProxy to send data between the two 
nodes while varying the compression algorithm. The figure shows that with compression 
enabled, we could achieve a very high gain in the measured throughput. This is due to the 
verbosity of the HTTP and SOAP protocols, which can therefore be compressed very efficiently. 
Despite the better compression ratio of LZMA compared to Zlib, the use of Zlib resulted in 
higher throughput. This is due to the higher demands on computational resources required by 
LZMA.



Figure 3. Measured throughput running the experiment wih Mockets via NetProxy and: a) compression 
disabled; b) Zlib compression; c) LZMA compression.

For the second experiment, we used Apache Qpid (http://qpid.apache.org/) to build a basic 
publish-subscribe architecture. Figure 4 presents the configuration we used for the experiment. 
Two instances of Qpid (Qpid A and Qpid B) were running on two different nodes of the testbed, 
and two applications, a publisher and a subscriber, were running on a third node (the publisher 
and subscriber were located on the same machine to enable accurate time measurements). The 
subscriber registered itself to Qpid B, while the publisher published messages to Qpid A. To 
dispatch the published messages to the subscriber, Qpid A was connected to Qpid B. We 
configured the connections between the publisher and the subscriber applications and the 
relative Qpid instances to use TCP over the 100Mb/s Ethernet LAN provided by the NOMADS 
testbed, while we used MANE to configure the link between the two nodes running the Qpid 
instances. The nodes we used in this experiment were CentOS 6.2 Linux virtual machines (VM), 
each VM running on an Ubuntu 8.04 LTS server. Again, we fixed the link bandwidth to 1Mb/s 
using MANE, and then repeated the experiment with the values 85, 90 and 95 percent for the 
link reliability parameter. To collect the results, the publisher published 10 copies of messages 
of 100, 256 and 512 kbytes for each reliability setting, and then measured the throughput. 



Figure 4. Configuration for the second experiment.

Figure 5 shows the results of the second experiment. They are divided into three charts, based 
on the message size, which graph the average measured throughput. The results demonstrate 
that, while the performance of both the solutions decreases with the decrease of the link 
reliability, the decreasing trend of TCP is much steeper than with NetProxy and Mockets. 
Moreover, in almost all the tests, the standard deviation measured when relying on Mockets and 
NetProxy to connect the nodes was lower than the standard deviation measured when TCP was 
used. The results also show that the transport protocol implemented by Mockets still has room 
for improvements when employed over reliable links. However, our past experience with the use 
of Mockets in real TEN scenarios has always exhibited significant improvements in terms of 
goodput, latency, and temporary connection disruption tolerance when compared to traditional 
TCP-based solutions. We found that the reason lay in the relatively high number of packet 
retransmissions occurring during the experiments, which corresponds to an average PER level 
higher than 10 percent.



Fig. 5. Average measured throughput (in kilobytes per second) for messages of different sizes: a) 100 
kbytes; b) 256 kbytes; c) 512 kbytes; and channel reliability set to 95, 90, and 85 percent. Reported 

results refer to tests run with TCP and Mockets via NetProxy.

6. Conclusions
Proxy-based technologies represent an interesting and very effective approach to enable the 
deployment of COTS applications in TENs. The potential of proxies in increasing the 
applications’ robustness and performance is so significant that their adoption deserves to be 
investigated beyond TEN environments.

The diffusion of proxy-based technologies could open up very interesting scenarios. First, it 
could lead to a world in which SOA- and TCP-based interfaces are perceived by developers as 
a commodity. Applications will be built on top of them and engineers will use proxies to deploy 
those applications anywhere.

In addition, tools like NetProxy enable the management of the security-related configuration 
of several applications in a single place, at the proxy level. This facilitates the deployment of 
not secure-by-design COTS applications in security-critical environments such as TENs. 

Proxy-based adapters could open the way for experimental development tools for SOA-based 
applications that automate application-specific traffic management or that support the 
development of dedicated plugins for proxy-based solutions. For instance, such tools could 
leverage additional (semantic) information inserted in WSDL documents via annotation 
schemes. This represents a very promising research direction that we are planning to explore 
within the NetProxy project in the near future.



We are also planning to test the NetProxy dynamic (re-)configuration capabilities and to 
evaluate its performance with additional commonly used  COTS applications. These results will 
be reported in future publications.
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