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Abstract—The emergence of large-scale Cloud computing environments characterized by dynamic resource pricing schemes 

enables valuable cost saving opportunities for service providers that could dynamically decide to change the placement of their 

IT service components in order to reduce their bills. However, that requires new management solutions to dynamically 

reconfigure IT service components placement, in order to respond to pricing changes and to control and guarantee the high-

level business objectives defined by service providers. This paper proposes a novel approach based on Genetic Algorithm (GA) 

optimization techniques for adaptive business-driven IT service component reconfiguration. Our proposal allows to evaluate the 

performance of complex IT services deployments over large-scale Cloud systems in a wide range of alternative configurations, 

by granting prompt transitions to more convenient placements as business values and costs change dynamically. We deeply 

assessed our framework in a realistic scenario that consists of 2-tier service architectures with real-world pricing schemes. 

Collected results show the effectiveness and quantify the overhead of our solution. The results also demonstrate the suitability 

of business-driven IT management techniques for service components placement and reconfiguration in highly dynamic and 

distributed Cloud systems. 

Index Terms—Optimization of Services Systems; Services Management; Bridging Business and IT Architecture; Installation 

Management; Simulation, Modeling, and Visualization. 

——————————      —————————— 

1 INTRODUCTION

OVEL Cloud computing infrastructures, consisting 
of worldwide fully interconnected data centers offer-

ing their computational resources on a pay-per-use basis, 
are opening brand new challenges and opportunities to 
develop sophisticated services and IT management sys-
tems on a global scale. These complex Cloud systems typ-
ically involve three main types of actors: service users, ser-
vice providers, and Cloud providers. Service users are the 
final clients that require access to specific online services. 
Service providers seize the opportunity to build new ser-
vices in order to increase their economical revenue and 
externalize the execution of their own services to avoid 
the deployment of costly private IT infrastructures. Final-
ly, Cloud providers are usually big players, such as Ama-
zon, Google, and IBM, that offer service providers all the 
system resources needed to execute their services on a 
pay-per-use basis. 

In recent years, many Cloud providers, such as Ama-
zon Elastic Compute Cloud (EC2) Spot Instance Service1, 
have introduced dynamic resource pricing schemes. In 
fact, Cloud providers typically benefit of underutilized 
resources at their different data centers, which they at-
tempt to sell by implementing temporary price reduction 

 

1  Amazon EC2 Spot Instance Service is available at: 
 http://aws.amazon.com/ec2/spot-instances/ 

and bidding schemes. As a consequence, resource prices 
are not only different between different Clouds, but also 
fluctuate over time depending on the different data cen-
ter, even for the same Cloud provider. Those new dynam-
ic pricing schemes would pave the way to significant op-
eration money savings if service providers were able to 
dynamically and self-adaptively (re-)place and operate 
their services to the data center that, at any time, grants 
needed service levels and the best economic advantages. 

Among the several open management issues that have 
to be solved to take full advantage of those new possibili-
ties, this paper originally focuses on the problem of ena-
bling placement computation of complex services that re-
quire the placement of multiple components and virtual 
resources (e.g., Virtual Machines - VMs, storage, network-
ing, etc.) in highly dynamic and large-scale Cloud envi-
ronments. This specific problem has already been ad-
dressed by some other works that all share the common 
purpose of balancing the Cloud provider internal objec-
tives, namely minimizing infrastructure/hardware re-
source usage and granting Service Level Agreement ne-
gotiated with Service Providers (𝑆𝐿𝐴𝑆𝑃), and the external 
objectives of service providers using the Cloud, typically 
cost minimization and fulfillment of SLA signed with 
their Service Users (𝑆𝐿𝐴𝑆𝑈). However, most of the works 
available in the literature tend to focus more on internal 
objectives with different goals: to minimize energy con-
sumption either in a single data center or in distributed 
multiple ones [1, 2, 3]; to balance incoming load to pre-
vent resource shortages [4, 5]; and to reorganize service 
schemes in order to deliver agreed SLAs and to let service 
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providers express specific placement constraints, usually 
considering traditional IT performance metrics [6, 7].  

The optimization of external objectives, instead, apart 
a few specific seminal studies [8, 9], is still widely unex-
plored. In this area, we will focus on the service provider 
perspective to address two specific business cases that 
have motivated our project. The first one is aimed to help 
service provider executives by assisting them in the opti-
mization of service allocation, though minimization of 
operational and business-related service costs. Those 
charges include: the cost of each Cloud component, au-
tomatically accountability according to the pay-per-use 
cost model; 𝑆𝐿𝐴𝑆𝑈 violation penalties as in the contract 
agreed with the service users; and possible delays when 
the service is moved and operated elsewhere for the sake 
of cost savings. The second one, instead, focuses on ser-
vice provider business managers with the goal to provide 
them with tools for calculating and verifying the align-
ment of IT service infrastructure with business criteria. 
That evaluation involves, on the one hand, risk manage-
ment aspects, such as, fault-tolerance and reliability, ten-
dency to under-dimension IT services, and likelihood of 
𝑆𝐿𝐴𝑆𝑈 violations; on the other hand, even intangible as-
pects, such as, service user satisfaction, and vendor lock-
in [10]. 

These use-cases raise a series of challenges regarding 
business-driven IT management, namely, the practice in 
IT service management that attempts to evaluate and op-
timize the IT infrastructure according to business criteria, 
in Cloud systems: 

• How can we model services operated by the service 
provider in the Cloud? 

• How do we keep up with the highly dynamic re-
source pricing schemes offered by Cloud providers so to 
minimize service provider operational costs? 

• How do we model service provisioning and user 
demand to evaluate feasible and realistic service place-
ment for different possible deployment scenarios? 

• How can we enable fast computation of future ser-
vice placement for fast alignment of service deployment 
to actual operational costs, SLAs, and business criteria? 
To answer those open technical challenges, this paper 
proposes a novel adaptive and business-driven service 
placement solution for Cloud computing environments 
that significantly enhances our recent previous work in 
this field [11], and shows three main original technical 
aspects. First, it considers business-driven metrics in order 
to evaluate the alignment of service placement (for all in-
teracting components) with the business objectives set by 
the IT management of the service provider; in particular, 
with respect to [11] it presents an much in-depth discus-
sion of the employed service modeling and allows to 
identify the configuration with the lowest business im-
pact. Second, it adopts a simulative approach to reenact IT 
services under different configurations, thus providing a 
much better capability to accurately capture peculiar be-
havior of real-life IT services than analytic methods. 
Third, it leverages on meta-heuristics based on Genetic Al-
gorithm (GA) optimizations to enable robust and resilient 
exploration of the large and dynamically-changing space 

of possible IT service component placement configura-
tions by also granting fast and effective reactions to 
changes, such as demand load and VM cost variations. 

In order to better underline the benefits and original 
aspects of the proposed solution and to demonstrate the 
effectiveness of our solution, the paper presents a thor-
ough experimental evaluation, much more wider and de-
tailed than the one in [11], based on a realistic 2-tier ser-
vice scenario and on real costs for a large-scale Cloud 
computing environment implemented on top of 3 differ-
ent Amazon EC2 data centers. Let us stress that this sce-
nario represents a very significant business use case be-
cause it allows to capture the simple yet effective distrib-
uted architecture adopted by many service providers, in-
cluding several successful startups using the Cloud to op-
erate their infrastructure, as in the case of the seminal In-
stagram architecture that in 2012 was essentially based on 
2 tiers2. 

2 BUSINESS-DRIVEN SERVICE PLACEMENT 

The possibility to quickly increase or decrease the pool of 
virtual resources used to implement an IT service enables 
service providers to dynamically reconfigure the architec-
ture of their IT systems, and to retune their performance. 
That presents many opportunities to rescale IT services to 
match both Cloud providers’ offers of virtual resources 
and users’ demand, enabling service providers to reap 
significant savings by allocating virtual resources when 
needed and at the best possible cost. 

So far, most approaches in IT service configuration op-
timization in Cloud environments focused on achieving 
IT-level objectives, typically for 𝑆𝐿𝐴𝑆𝑃 enforcement pur-
poses. This effectively means evaluating IT service con-
figurations from an internal IT perspective, a conceptually 
straightforward but in practice very difficult task which 
requires to consider many IT-level performance metrics. 
Since those metrics are often very difficult to aggregate, 
this calls for the adoption of relatively sophisticated, and 
possibly brittle, multi-objective optimization methods. 

The pay-per-use pricing schemes of Cloud computing, 
instead, facilitate the accurate estimation of IT costs, thus 
presenting the natural opportunity to evaluate IT service 
architectures from the external business perspective of service 
providers. This fosters service providers to reconfigure 
their IT services in order to minimize IT costs, and conse-
quently to maximize revenues. However, this represents a 
straightforward, but rather naïve evaluation criterion that 
does not consider business aspects such as risk manage-
ment and other intangibles, thus enforcing an excessively 
shallow business-level perspective [12, 13]. 

To this end, business impact analysis techniques repre-
sent a significantly better criterion for service providers to 
adopt for the performance optimization of their (virtual) 
IT infrastructures. Business impact-driven optimization 
aims at aligning IT service configurations with the busi-
ness objectives of service providers, possibly even 
 

2  Instagram high scalability architecture, article available at: 
 http://highscalability.com/blog/2012/4/9/the-instagram-

architecture-facebook-bought-for-a-cool-billio.html 
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through the adoption of business management-specific 
techniques such as the Balanced Scorecard or the Analytic 
Hierarchy Process [14, 15]. 

Indeed, business impact represents a very convenient 
criterion from the optimization perspective, because it en-
ables to evaluate all different aspects of IT service config-
urations through the same (monetary cost) metric in the 
optimization process. That enables an easier and more ro-
bust aggregation of different measured values, and allows 
the adoption of significantly simpler and more efficient 
optimization algorithms than complex multi-objective 
methods. Finally, business impact analysis does not re-
quire to consider explicit constraints on allowed IT ser-
vice configurations (e.g., a maximum threshold for service 
response times) because undesired service configurations 
will have a high business impact and therefore will be au-
tomatically ruled out by the optimization process. 

Worldwide Cloud systems raise several complexities 
from the configuration optimization perspective because 
services are typically deployed on a global scale. In addi-
tion, there is the need to consider an accurate model of 
virtual resource allocation that takes into account multi-
ple service users and multiple Cloud data centers with 
different pricing schemes. Finally, it should consider the 
geographical distance between the instantiated virtual re-
sources and the corresponding service users’ location and 
the possibility to migrate service components between 
different Cloud data centers. 

This raises the opportunity to design and develop so-
phisticated Cloud-based IT service optimization solutions 
capable of reenacting alternative IT service configuration 
through what-if scenario analysis, of evaluating their 
business-level performance, and of identifying the most 
convenient one. To this end, in this paper we propose 
Business-Driven Management as a Service (BDMaaS), an 
adaptive and business-driven service placement and re-
configuration solution for IT services; Fig. 1 shows how 
BDMaaS framework integrates with existing Cloud sys-
tems and actors. 

BDMaaS agents (deployed at provider data centers) are 
in charge of gathering data center resource availability, 
pricing schemes, and resource costs proposed by Cloud 
providers and of activating VMs at the target data centers. 
BDMaaS engine analyses the business impact of possible 
service placement adjustments and takes deployment de-
cisions. BDMaaS REpresentational State Transfer (REST) 
based Application Programming Interfaces (APIs) are offered 
by our support to service providers to let them specify all 
needed input data, such as service and demand profile 
models, business goals and costs, etc., and to verify the 
alignment of adopted deployments with their business 
criteria. Finally, BDMaaS bus glues together all main 
BDMaaS components by enabling the necessary commu-
nication substrate. In the remainder of this article, we fo-
cus mainly on the BDMaaS engine that represents the 
core and more complex component of the whole BDMaaS 
architecture. 

3. THE BDMAAS FRAMEWORK 

The overall goal of the BDMaaS framework is the evalua-
tion of the service placement that minimizes the business 
impact of the deployment with respect to all service pro-
vider operational and non-operational business criteria.  

For the sake of simplicity, and without hindering the 
generality of the proposed approach, BDMaaS currently 
focuses on VMs as the basic building blocks for the reali-
zation of complex IT services. In other words, BDMaaS 
conceptually operates at the Infrastructure-as-a-Service 
(IaaS) level with the main goal of finding the best place-
ment configuration of the VMs in the distributed Cloud 
environment. 

Fig. 2 better details the internal architecture of the 
BDMaaS framework. Service providers interact with the 
BDMaaS engine using the BDMaaS REST-based APIs that 
includes two components, namely, Configuration Man-
agement and Policy Management. These components al-
low service providers to enter a configuration of the 
Cloud computing environment (e.g., number of data cen-
ters, service model, etc.) and to select the optimization 
policies to apply (e.g., business objectives, parameters for 
the optimization algorithm, etc.). 

Focusing on the BDMaaS engine, it consists of three 
main stages that work in a pipeline, namely, modeling, 
optimization, and decision making. At the modeling 
stage, Demand Model and Service Model are the two 
main components that provide, respectively, the func-
tions for building the models of the service user service 
request arrival process (e.g., customers’ locations, distri-
butions of service request inter-arrival times, etc.) and of 
the IT service execution (e.g., service time distribution, 
current service component placement, etc.).  

The optimization stage consists of the Optimization 
macro-component and represents the core part of 
BDMaaS. It is in charge of reenacting the Cloud compu-
ting IT service and of evaluating possible alternative ser-
vice placement configurations according to optimization 
policies selected by service providers and to the service 
and demand models provided by the previous stage. 
First, the Service Placement Simulation component mim-

 
Fig. 1. BDMaaS distributed architecture and integration with ex-
isting Cloud systems and actors. 
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ics possible service placements among those generated by 
the modeling stage. Then, the Business Impact Analysis 
component assigns an overall cost (namely, business im-
pact) to each of these possible configurations. 

At the third stage, the Decision Making component is 
in charge of selecting the best IT service placement con-
figuration, namely, the one minimizing the business im-
pact, according to the user preferences and the output da-
ta provided by the Optimization component. Finally, 
BDMaaS was designed to be easily integrated with exist-
ing Cloud-based IT services through lightweight BDMaaS 
agents installed at each data center. Each agent includes 
three relatively simple and implementation-specific “con-
nector” components: Demand Monitoring, Service Moni-
toring, and Actuator, depicted in green in Fig. 2. 

The Demand Monitoring component continuously an-
alyzes service user request logs and feeds the Demand 
Model component with accurate and up-to-date data. 
Similarly, the Service Monitoring component integrates 
with real-life application performance and virtual re-
source cost monitoring tools to update the parameters of 
the service execution model used in the simulations.  Fi-
nally, the Actuator component is capable of automatically 
putting the new service configuration in place as required 
by the Decision Making component. 

4. SYSTEM AND SERVICE MODEL IN BDMAAS 

Large-scale Cloud-based IT services are complex systems, 
formed by a large number of interconnected software 
components, and their modeling is a very challenging 
task that requires to consider tradeoffs in model complex-
ity. This section provides a detailed description of all 
main assumptions and motivations of modeling choices 
adopted in the modeling stage of our BDMaaS engine. 

In the literature, some recent works model Cloud 
computing services as composed of fully independent 
components [8]. That assumption allows to significantly 
limit the complexity of the service placement framework 
through the use of analytic methods to identify the opti-
mal service placement. However, that model does not suit 
well the complexity of Cloud ecosystems that typically 
require 2- or 3-tier architectures.  

A different approach, stemming from research on tra-
ditional, i.e., non-Cloud-based, Web services proposes to 
model both the single software component behavior, lev-
eraging on closed queuing networks [16] or service time 
approximation methods [17], as well as their interactions 

within service sessions. However, these models are not 
always applicable to the service placement optimization 
of Cloud-based infrastructures. In fact, in modern large-
scale Cloud-based IT service deployments the database 
function is often implemented by a geo-replication system 
between the different data centers [18]. This means that 
for large scale deployments, the traditional 3-tier architec-
ture of Web services translates to a 2-tier architecture plus 
an additional database layer that, for the service place-
ment optimization purpose, could be considered as a 
commodity available at each Cloud data center. 

In addition, complex Cloud-based services present dy-
namic aspects that cannot be ignored in the modeling 
process, especially with regards to the demand modeling 
phase. In fact, while demand modeling research in Web 
services focuses on the accurate reenactment of requests 
within service, i.e., browsing sessions [16, 17], demand 
modeling in Cloud-based services typically focuses on the 
reenactment of an aggregate flow of requests, that also 
considers daily and weekly patterns in request loads. 
More specifically, in order to correctly reenact the work-
load on the Cloud computing IT service, demand models 
should accurately capture the inter-arrival time patterns 
in service requests. In fact, service user requests typically 
have highly dynamic and non-trivial patterns, and their 
proper reenactment calls for the adoption of sophisticated 
modeling techniques based on non-parametric statistics. 

To address all these challenging issues, we need new 
service and demand models able not only to capture the 
relationships between service components (each one de-
ployed to a single VM), but also to measure the impact of 
a component reallocation to a different data center on the 
whole service performance as better described in the fol-
lowing subsections. 

4.1. IT service model 

BDMaaS service model enables to reenact complex 
Cloud-based IT services offered on a global scale; in the 
following, we first detail how we model complex distrib-
uted Cloud services, and then we focus on the modeling 
of single service components. 

Starting with distributed modeling aspects, BDMaaS 
model evolves usual Web services models [16, 17]; it con-
siders a Cloud service as a set of software components 
deployed on multiple Cloud data centers and using geo-
replicated database layer available at each Cloud data 
center, thus resulting in a 2-tier architecture deployment. 

Moreover, our service model has been designed to cap-
ture the execution of the multiple service components 
(VMs) at different geographically distributed data cen-
ters, considering also the fine grained characteristics of 
VM types available for instantiation with corresponding 
set of virtual resources (CPU, storage, etc.) and pricing 
schemes. That closely represents offer of all more popular 
public IaaS Cloud environments, such as Amazon EC2. 

Without loss of generality, each tier of the IT service is 
formed by a number of (equivalent and replicated) ser-
vice components of the same type, so to model the adop-
tion of horizontal scalability techniques usual of Cloud 
environments. Software components of each tier run in-

 

Fig. 2. The internal architecture of the BDMaaS framework. 
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dependently, and interact only with software components 
from other tiers as service requests flow through them. 

When a service request arrives at a Cloud data center, 
it is initially dispatched to a tier-1 software component 
(more specifically, to the corresponding VM) according to 
the tier-1 load balancing policy implemented by the IT ser-
vice. Our model includes several types of load balancing 
policies, such as “random component” and “least loaded 
component” selection, designed to capture the behavior 
of load balancing support typically available by Cloud 
IaaS providers, such as Amazon EC23. The same policies 
are used to model the request forward to tier-2 compo-
nents. 

Focusing on single service component modeling, we 
map service components to VMs, and assume that each 
VM runs a single software component that can be instan-
tiated only in the subset of available VM types that satisfy 
its resource requirements. 

As for the execution model, we opted for an open queu-
ing network model because it represents a very flexible 
model capable of accurately capturing the behavior of a 
large class of real-life software components. In particular, 
we model tier-1 and tier-2 software components as multi-
server G/G/𝑠𝑖  First Come First Served (FCFS) queue, 
namely, single servers where both request inter-arrival 
times and service times have a (different) General distri-
bution (i.e., G/G) and where 𝑠𝑖  is the number of service 
processes concurrently running in the i-th service compo-
nent. G/G/𝑠𝑖  FCFS queues, supporting a wide range of 
stochastic models for service times from parametric prob-
ability distributions to empirical probability distributions 
built from log traces, effectively model both simple and 
very sophisticated service component behaviors within 
an easy-to-understand conceptual framework [19]. In ad-
dition, they allow to mimic different performance levels 
that software components exhibit when running in differ-
ent VM types by tuning the set of model parameters 𝜃𝑖,𝑗 
for each couple of software component i and VM type j. 

4.2. Modeling service user requests and SLASU 

Modeling the request arrival process is also a particu-
larly challenging task that requires considering multiple 
customers with different locations and service usage pro-
files that might change over time (daily and weekly) and 
with highly dynamic behaviors. For each service user, we 
consider a different, dynamic request generation profile 
designed to accurately capture the time-varying nature of 
his requests. Researchers have shown that dynamic work-
load on Cloud-based systems can be rather accurately 
predicted, for instance using AutoRegressive Integrated 
Moving Average (ARIMA) [20]. As a result, the varying-
intensity request generation process for the i-th service 
user can be modeled through non-stationary stochastic 
processes, such as Non-Homogeneous Poisson Processes 
(NHPP), with a time-varying intensity 𝜆𝑖(𝑡) [21]. In turn, 
the 𝜆𝑖(𝑡) function could be inferred from the analysis of 
historical service request log data, through a predictive 
tool, e.g., ARIMA.  
 

3  Amazon Web Services Elastic Load Balancing is available at: 
 http://aws.amazon.com/elasticloadbalancing/ 

Alternatively, high-variance stationary stochastic pro-
cesses, based on power law distributions such as Pareto, 
also represent a very interesting approach for service re-
quest reenactment. In fact, they are often proposed in re-
search literature to model inter-arrival times of service 
requests in non-stationary conditions, as they enable to 
capture the time-varying behavior of service requests 
through a relatively simple stationary stochastic process, 
thus achieving a remarkably attractive tradeoff between 
model accuracy and complexity [21, 22]. 

We also assume that service user requests are automat-
ically forwarded to the closest Cloud data center among 
those ones involved in the IT service deployment. This is 
a rather realistic assumption, as most Cloud providers 
nowadays offer that geographical request routing sup-
port, such as Amazon Route 534. However, the accurate 
performance evaluation of Cloud computing services also 
requires to calculate the communication latencies in-
volved in service user requests, that depend from the rel-
ative position of service user location and reference Cloud 
data center. Accordingly, we model communication la-
tencies using stochastic processes.  

From a business management perspective, instead, our 
model is very expressive and enables to define several 
𝑆𝐿𝐴𝑆𝑈s for an IT service, to associate them with a specific 
set of service users, and to set the corresponding violation 
penalties. BDMaaS provides service providers with a do-
main-specific language for the definition of IT- and busi-
ness-level Key Performance Indicators (KPIs), of sophisti-
cated 𝑆𝐿𝐴𝑆𝑈 verification checking functions on top of 
those indicators, and of the corresponding violation pen-
alties calculation functions. 

5. GA-BASED SERVICE PLACEMENT OPTIMIZATION 

This section delves into the realization details of the op-
timization and decision making stages of our BDMaaS 
engine. First, it introduces the main phases to estimate the 
business impact (i.e., monetary cost), then it focuses on 
the proposed optimization technique, and finally it re-
ports some details about the decision making approach. 

5.1. Business Impact Analysis 

We formalize the Business Impact (BI) analysis of a Cloud 
based IT service operating with configuration x through 
the definition of a function BI, whose evaluation is divid-
ed in two consecutive stages: an IT-level one and a busi-
ness-level one. We then have: 
 

BI(x)  =  BIA(ILM(x)) (1) 
 
The IT-Level Metrics (ILM) and the Business Impact 

Analysis (BIA) functions evaluate the performance of the 
IT service through IT-level and business level Key Per-
formance Indicators (KPIs) respectively. In BDMaaS, 
those functions are respectively implemented by the Ser-
vice Placement Simulation and Business Impact Analysis 
components. More specifically, ILM returns both the re-
source consumption of the IT service and its performance 
 

4 Amazon Route 53 is available at: http://aws.amazon.com/route53/ 
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measured through a set of IT-level metrics defined by the 
service provider, obtained from a simulation of the IT 
service operating in configuration x. These values are 
then provided to BIA that uses them to perform the busi-
ness impact analysis of configuration x.  

BIA consists of 3 subcomponents, involving different 
phases: new IT service configuration and deployment cost 
evaluation, 𝑆𝐿𝐴𝑆𝑈 violation penalties estimation, and 
(where applicable) service reorganization cost assess-
ment. Formally, it is: 

 
BIA(m)  =  C𝑂𝑃𝑆(m) +  C𝐶𝑁𝑇𝑅(m) +  C𝐷𝑅𝐼𝐹𝑇(m) (2) 

 
where we apply the variable substitution m = ILM(x) for 
convenience. 

In the first phase, corresponding to the 𝐶𝑂𝑃𝑆 compo-
nent, our framework calculates the operational costs 
caused by running system with configuration x according 
to the fees for all considered Cloud data centers. These 
costs are based on real data available at all major Cloud 
providers (such as Amazon, Microsoft, IBM, etc.) and 
change over time and for different geographic locations, 
depending on data center location and being influenced 
by several factors (energy cost, local security conditions, 
etc.). 

The second phase, instead, considers the cost of oper-
ating the IT service in configuration x from the contract-
ing perspective. The corresponding 𝐶𝐶𝑁𝑇𝑅 component 
evaluates whether switching to the new IT service config-
uration x would cause the service provider to incur in vio-
lation penalties, more formally: 

𝐶𝐶𝑁𝑇𝑅(𝑚) =  ∑ 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠(𝑖, 𝑚)𝑁
𝑖=1   (3) 

where, for each 𝜎𝑖 (with 1 ≤ 𝑖 ≤ 𝑁) defined in the set 
𝑆𝐿𝐴𝑆𝑈 of Service Level Agreements stipulated with the 
service users, the violations function calculates the corre-
sponding business-level KPIs Κ𝑖, checks whether they fall 
within the corresponding target range 𝜏𝑖 stipulated with 
the service user, and, if not, applies the corresponding 
penalties.  

Finally, the third phase, 𝐶𝐷𝑅𝐼𝐹𝑇 , calculates the costs re-
lated to performance regressions, risk management, and 
reconfigurations for operating the IT service in configura-
tion x with respect to the current configuration 𝑥0. These 
effects are not fully captured by the 𝐶𝑂𝑃𝑆 and 𝐶𝐶𝑁𝑇𝑅 com-
ponents alone, so we define a function to specifically ad-
dress them: 

 
𝐶𝐷𝑅𝐼𝐹𝑇(𝑚) = 𝑓𝐷𝑅𝐼𝐹𝑇(𝑚, 𝐼𝐿𝑀(𝑥0)) (4) 

 
where 𝑓𝐷𝑅𝐼𝐹𝑇  is usually defined as a penalization function 
over one or more IT-level KPIs. 

𝐶𝐷𝑅𝐼𝐹𝑇 is an essential component in our model, that 
addresses multiple concerns. First, it effectively enables 
the introduction of risk management aspects that coun-
terbalance the tendency of automated optimization solu-
tions to select under-provisioned IT service configura-
tions. In fact, assigning IT services the exact amount of 
virtual resources they are expected to require could leave 

them under-dimensioned and under-performing in case 
of unexpected load spikes, potentially leading to more 
𝑆𝐿𝐴𝑆𝑈 violations. In addition, an optional and application-
specific task, triggered only when necessary, is to calcu-
late the costs related to IT service reorganization from the 
current configuration 𝑥0 to the new configuration x. For 
instance, migrating VMs between different data centers 
might result in traffic costs as well as costs related to per-
formance loss; moreover, it might be required to stop the 
service during the migration, and that would also con-
tribute to increase the costs related to temporary service 
unavailability, and so forth. 

5.2. Business Impact Optimization 

After the first cost evaluation phase, BDMaaS chooses the 
solution that optimizes the BI, by minimizing it. Hene, 
from a theoretical perspective we formalize the service 
placement problem as the following optimization prob-
lem: 

min
𝑠𝑏𝑗𝑐𝑡 𝑡𝑜  𝑥 ∈𝑆𝑃𝐶

𝐵𝐼(𝑥) (5) 

where the variable x represents the IT service configura-
tion; the set 𝑆𝑃𝐶  represents the space of possible IT service 
configurations to explore; and BI is the function (de-
scribed in the previous subsection) that evaluates the 
business impact of the IT service configuration x. 

The BI function is very complex, thus limiting the ap-
plicability of traditional mathematical optimization algo-
rithms, such as those based on gradient evaluation and 
descent techniques. In fact, since the gradient of the BI 
function is unknown, the calculation of approximate val-
ues for the gradients would require a large number of 
evaluations of BI, thus significantly slowing down the 
convergence time of the optimization process [23].  

 Because the space to explore is typically very wide, we 
in BDMaaS we decided to use meta-heuristics designed 
for large-scale optimizations. In fact, we believe that the 
complex nature of this class of optimization problems 
calls for the adoption of GA-based optimization tech-
niques. 

GAs not only have the very desirable property of being 
resilient to changes in the optimization function, as it may 
occur in our problem, but they are also able to promptly 
react to changes in the operating conditions by hasting 
the optimization process. In fact, (a part of) the fit indi-
viduals from the last population generation can be used 
as a starting/priming point for the next round of optimi-
zation [24]. In addition, the GA population size parameter 
can be modified to control the number of times that the 
optimization function is evaluated for every optimization 
cycle. Finally, GAs can be easily parallelized and it is pos-
sible to take advantage of parallel execution frameworks 
in the Cloud, such as MapReduce-based solutions [25]. 

As regards our customized GA, we map the typical 
concepts of GA-based techniques, namely, fitness to the 
environment, inheritance, selection, mutation, and re-
combination [24], to our optimization problem as follows: 

 the space of candidate solutions (in our case, SPC) 
has a genetic representation – that is, a candidate so-
lution is represented as the genotype, i.e., the genet-
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ic material, of a specific individual living in a natu-
ral environment; 

 the function to optimize (in our case, BI) is a meas-
ure of the “fitness” of an individual (in our case x) 
to the natural environment; 

 time is divided in epochs (or generations) in which 
only a (fixed-size) population of individuals can ex-
ist; 

 the “fittest” individuals (for each generation) will be 
selected for breeding, through a process of mutation 
and recombination of their genetic material, thus 
generating an offspring that will form the next-
generation population. 

Within the family of GAs, a specific GA might differ 
from the others for the specific genetic representation of 
candidate solutions, or the selection, mutation, and re-
combination procedures that it adopts [26, 27]. We adopt-
ed a rather straightforward integer vector representation 
for the search space, namely, the service component allo-
cation that in the GA metaphor takes the name of geno-
type. More specifically, our algorithm considers a geno-
type representation composed of as many chromosomes as 
the number of data centers to consider. In turn, each 
chromosome consists of two genes, each one containing 
the number of VMs allocated for the corresponding ser-
vice tier, respectively, for Tier 1 and Tier 2, at that data 
center; hence, the content of each gene is an integer great-
er or equal to 1. 

Moreover, our GA implements a binary tournament 
selection phase to select the candidates to reproduce, and 
a reproduction phase based on random geometrically-
distributed mutations and intermediate recombination. 
While binary tournament and intermediate recombina-
tion are traditional mechanisms often adopted in GAs, the 
choice to adopt a geometric distribution-based mutation 
procedure is original and driven by the peculiar charac-
teristic of this problem. 

In fact, the geometric probability distribution is usually 
adopted to model the number of negative outcomes in a 
sequence of trials before achieving a positive outcome. 
For instance, the geometric distribution can be used to 
calculate the probability that a sequence of k+1 coin toss-
es will result in a sequence of k heads, when 𝑝𝑚 is the 
probability of a single coin toss resulting in a tail. 

In our experiments, we found that using values sam-
pled from a geometric distribution as modifiers for the 
genes’ integer representations makes the mutation proce-
dure a particularly effective tool in exploring the search 
space, enabling it to strike a very good tradeoff between 
local and global exploration. This is consistent with what 
other researchers reported in GA-related scientific litera-
ture. For instance, in her seminal paper on hypermutation 
in GAs, Cobb notes that a mutation phase based on the 
sampling from a power law distribution represents a rela-
tively simple procedure that leads to very effective results 
[28]. 

The mutation probability parameter 𝑝𝑚 controls the 
shape of the distribution from which variations to the 
current individual’s genes are sampled, thus effectively 
modulating the impact of the mutation phase in the GA-

based optimization process. Higher values of 𝑝𝑚 will re-
sult in lower average mutation sizes and lower values of 
𝑝𝑚 will lead to higher average mutation sizes. As we will 
demonstrate later, the choice of the mutation probability 
parameter is critical for the GA efficiency, as an excessive-
ly high value could significantly slow down the conver-
gence process and an excessively low value could cause 
too much variations between a generation of individuals 
and the following one - thus effectively disregarding the 
memory of the algorithm, tilting the GA search process 
towards a mostly explorative behavior, and ultimately 
bringing the GA to operate in a sort of unstable state that 
severely harms the convergence process. 

The adoption of the integer vector representation and 
of a mutation phase based on sampling from a geometric 
distribution brought the GA version presented in this pa-
per to achieve a significantly improved efficiency com-
pared to more traditional versions based on bitstring 
genotype representation, such as the one adopted in our 
previous work [11]. 

5.3. Decision Making Phase 

The evaluation of different configurations and the detec-
tion of the optimal one needs to be followed by a decision 
making phase with the purpose of deciding whether the 
new configuration has to be applied or not. In fact, service 
reconfigurations are time- and resource-consuming, and 
should be performed as seldom as possible. 

As a result, there is the need to put in place manage-
ment precautions that limit the frequency of service 
placement reconfigurations. To avoid frequent reconfigu-
ration and to avoid ping-pong effects, BDMaaS currently 
allows service reconfigurations only after a minimum 
time interval 𝜏𝑆𝐿𝑅 has elapsed since the last reconfigura-
tion or when the difference between the (expected) busi-
ness impact of the current and the new configuration ex-
ceeds a pre-configured threshold, thereby effectively im-
plementing a hysteresis-based reconfiguration process. 

6 EXPERIMENTAL EVALUATION 

We realized a prototype implementation of the BDMaaS 
engine in the JRuby platform. The prototype adopts the 
Simulator for IT Service in Federated Clouds (SISFC) 
component and the ruby-mhl optimization library, which 
we developed in the context of this research project5 and 
released as open source. 

We used our prototype to evaluate the behavior of our 
service placement framework in a limited but significant 
test scenario that attempts to capture the most critical as-
pects of service placement in large-scale Cloud compu-
ting environments with multiple data centers. 

 
6.1 Service Model and Simulation Configuration 

As introduced before, we focus on the problem of opti-
mally placing in the Cloud the components of a complex 
IT service, considering 2-tier services modeled according 
 

5  For more information about the SISFC software, installation, configura-
tion language, preferences, and used genotype representations, we re-
fer the reader to project home page: http://endif.unife.it/dsg/sisfc 
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to what described in Section 4. We consider a deployment 
in multiple Cloud data center operated by Amazon to il-
lustrate the opportunities in using BDMaaS even with a 
single Cloud provider scenario. In addition, we believe 
the single Cloud provider case to be the most common 
one for real-life IT service deployments at the moment of 
this writing, due to non-negligible difficulties in migrat-
ing service components from one Cloud provider to an-
other. In particular, we consider three Amazon EC2 
Cloud data centers: US (East), Japan, and Brazil. 

In our experiments, we model service components as 
G/M/1 FCFS queues. This is a specialization of the gen-
eral G/G/𝑠𝑖  FCFS model described in Section 4.1, in 
which inter-arrival times have a general distribution and 
service times for each job have an exponential distribu-
tion and a single service process. We adopt this model to 
highlight the generality of our approach that can lead to 
very interesting saving opportunities even when applied 
to a generic IT service with a roughly sketched service ex-
ecution model. In fact, the G/M/1 model captures the 
behavior of a rather large part of software components 
with an acceptable trade-off between model complexity 
and accuracy. 

As for model parameterization, we respectively select-
ed a mean duration of 9 and 12ms for tier-1 and tier-2 
service times, to emulate a larger processing at tier-2. We 
also assume that the times spent in tier-1 and tier-2 com-
ponents of our service execution model include the access 
times to the geo-replicated database layer. 

To generate request inter-arrival times, we adopted the 
model discussed in Section 4.2 based on the sampling 
from a random variable with a Pareto distribution: 

𝐹(𝑥) = {
1 − (

𝑥𝑚

𝑥
)

𝛼

  𝑥 ≥  𝑥𝑚

0  𝑥 <  𝑥𝑚

  (6) 

with a scale parameter 𝑥𝑚 equal to 1.2E-4s and a shape 
parameter 𝛼 equal to 5.0, resulting in an incoming service 
request rate of 6666.67 per second (400,000 per minute).  

Moreover, we assume that tier-1 components can fit in-
to an Amazon EC2 x1.medium VM, while tier-2 compo-
nent require an x1.large VM6. We consider the operational 
costs for those VM types detailed in Table I, which repre-
sent real market prices in the corresponding Amazon EC2 
Cloud data centers. 

Finally, we consider a service user with global pres-
ence, and assume the service user’s requests to be uni-
formly distributed among the three considered Cloud da-
ta centers. Besides, to account for all possible communica-
tion latencies, such between service user and Cloud data 
centers and for geo-replicated database layer access, we 
assign to each request an additional aggregate amount of 
time estimated as a random time penalty sampled from a 
truncated Gaussian distribution with a mean of 100ms, a 
standard deviation of 25ms, and a minimum value of 
20ms. 

Each configuration is evaluated by the BDMaaS Ser-
vice Placement Simulation component, implemented by 
 

6 Information on VM instance types offered by Amazon EC2 is availa-
ble at: http://aws.amazon.com/ec2/instance-types/ 

the SISFC simulator, for a total (simulated) time of 40s. In 
particular, we did not consider the first 10s of (simulated) 
warm-up time not to bias results from observing the sys-
tem in a cold start state, this leaves an effective (simulat-
ed) time of 30s, during which approximately 200,000 re-
quests are evaluated. In our tests, this has proved to be an 
adequate interval of time to evaluate the system perfor-
mance, while keeping the computational cost of the simu-
lations manageable. 

Finally, we consider a fixed 1,500$ 𝑆𝐿𝐴𝑆𝑈 violation 
penalty in case the Mean Response Time (MRT) perfor-
mance indicator raises above the 200ms threshold, and we 
impose a performance regression penalty in case the VM 
allocation fails to deliver the performance parameter set 
by IT managers. More precisely, we consider a target val-
ue 𝑆𝑅0=200,000 of requests served, and we adopted the 
following formula: 

𝑓𝐷𝑅𝐼𝐹𝑇(𝑆𝑅, 𝑆𝑅0) =
10,000 $

𝜋

2

∗ tan−1 (
𝑆𝑅0−𝑆𝑅

𝑆𝑅0/8
) (7) 

where the Served Requests (SR) metric represents the 
number of requests actually served, so to penalize IT ser-
vice configurations that did not provide performance lev-
els as expected by service providers. For SR values bigger 
than 200,000 no penalization is applied. 

Let us note that the choice of an appropriate value for 
the scale parameter (10,000 $ * 2 / 𝜋 in equation 7) of the 
𝑓𝐷𝑅𝐼𝐹𝑇  function represents a very important aspect, which 
the service provider should dedicate special attention to 
when inserting the description of an IT service to be op-
timized in BDMaaS. In fact, the scale parameter of 𝑓𝐷𝑅𝐼𝐹𝑇  
modulates the impact of the 𝐶𝐷𝑅𝐼𝐹𝑇  component of equa-
tion (2) with respect to the the 𝐶𝑂𝑃𝑆 and 𝐶𝐶𝑁𝑇𝑅 ones. 

6.2 GA-based Optimization Assessment 

The first set of experiments evaluates the effectiveness of 
the proposed GA in optimizing the service component 
placements. Initially, we selected 128 as the population 
size parameter of the GA through empirical trial-and-
error process, which is usually recommended as a best 
practice when working with GAs [29]. 

We then tuned the mutation probability parameter of 
the GA running various experiments for 5 different val-
ues of mutation probability parameter: 0.1, 0.2, 0.3, 0.4, 
and 0.5 – corresponding to an average mutation of 9, 4, 
2.33, 1.5, and 1 units respectively. We also assessed an 
adaptive control method of the mutation probability pa-
rameter 𝑝𝑚 of the GA. More specifically, we implemented 
a modified version of the Rechenberg control algorithm, 
that modulates the mutation probability parameter value 
𝑝𝑚 according to the performance of the last G generations 
in the GA, increasing 𝑝𝑚 of a factor 𝛼 if more than 20% of 
the last G generations were more successful than their 

TABLE I. PRICING FOR MEDIUM AND LARGE SIZE VMS IN AMA-

ZON EC2 DATA CENTERS (FIGURES IN $/HOUR). 

 AMAZON US 

(EAST) 
AMAZON  

JAPAN 
AMAZON 

BRAZIL 

MEDIUM 0.160 0.184 0.230 

LARGE 0.320 0.368 0.460 
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preceding generation in finding a fitter solution, and de-
creasing 𝑝𝑚 of 𝛼 instead [29, 30]. This adaptive control of 
𝑝𝑚 enables to dynamically tune the GA, steering it to-
wards a more explorative or a more exploitative behavior, 
according to the (recent) results of the search space explo-
ration. We tested our adaptive control algorithm using an 
initial value of 𝑝𝑚 equal to 0.3, 𝛼 =  0.1, and in two differ-
ent configurations for the number of generations to con-
sider in the control procedure: G=5 and G=10 respective-
ly. In all the experiments presented in this paper, we 
adopted the recommended value of 0.25 for the interme-
diate recombination probability parameter [24].  

Fig. 3 shows on the y-axis the value of the BI function, 
in $/day, when calculated on the best individual of the 
generation indicated on the x-axis. The 𝑝𝑚 = 0.1 curve 

corresponds to the GA variant with the highest impact of 
the mutation phase and, consequently, an aggressively 
explorative (instead of exploitative) behavior. In this case, 
the GA exhibits a steep drop in business impact at first, 
but it soon enters an “oscillating” operating condition 
which the algorithm keeps moving between a series of 
local minima. The best convergence curve is the one ob-
tained from the adaptive control of the 𝑝𝑚 parameter with 
G=10. In fact, the adaptive control GA variant achieves an  
optimal tradeoff between explorative and exploitative be-
havior, thus helping the GA to work around uninterest-
ing parts of the search space (plateaus and local minima) 
so to focus on more interesting ones. 

The best configuration that we obtained in the experi-
ment resulted in a cost of 3074.64 $/day (1208.35 $/day 
for running the VMs and 1866.29 $/day for performance 
related penalties). Table II shows the number of VMs al-
located to each data center in this configuration. 

6.3 Dynamic Adaptiveness to Request Load 
Variations 

The second set of experimental results verifies the capaci-
ty of the BDMaaS framework to adapt to a dynamic re-
quest load. To this end, we simulated three request load 
variations, with an increase of 5%, 12%, and 14% with re-
spect to the reference request load used in the previous 
experiment. We changed the penalization model accord-
ingly, by setting the target value 𝑆𝑅0 in equation (7) to 
210,000, 224,000, and 228,000, so to match the increased 
number of expected service requests. 

We used the same parameters adopted in the previous 
experiment (population size 128, adaptive control of mu-
tation probability parameter starting from an initial value 
of 0.3 and re-evaluating the mutation probability every 10 
generations), and we consider as baseline the curve ob-
tained for the reference workload (see Fig. 4).  

The curves for the +12% and +14% workload condi-
tions exhibit a better convergence rate than the one for the 
+5% one. This behavior can be traced back to the different 
target functions considered in the optimization runs (𝑆𝑅0 
assumes a different value in each run) and to the stochas-
tic nature of the GA. In any case, let us point out that 
these are all valid outcomes for the GA, and that continu-

TABLE II. OPTIMAL VM PLACEMENT FOR EXPERIMENT 1. 

 AMAZON 

US 
AMAZON  

JAPAN 
AMAZON 

BRAZIL 

MEDIUM 25 25 24 

LARGE 33 31 31 

 

TABLE III. OPTIMAL VM PLACEMENT FOR EXPERIMENT 2. 

  AMAZON 

US 

AMAZON 

JAPAN 

AMAZON 

BRAZIL 

+ 5% MEDIUM 28 27 25 

LARGE 31 34 32 

+ 12% MEDIUM 28 27 29 

LARGE 34 34 33 

+ 14% MEDIUM 33 27 27 

LARGE 36 34 37 

 

Fig. 3. Convergence speed of the GA using different mutation 
operators. 

Fig. 4. Convergence speed of the GA with different request 
loads. 
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ous optimization tool like BDMaaS, that are designed for 
systems with strongly dynamic behaviors, are better 
served by GA variants that exhibit a smooth, steep, and 
reliable descent, instead of GA variants that reach the 
lowest plateau in a high number of generations. 

The new configurations selected by our prototype re-
sulted in a cost of 3086.66 $/day (1256.40 $/day for run-
ning the VMs and 1830.26 $/day for performance related 
penalties) for the +5% run, of 3204.72 $/day (1312.56 
$/day for running the VMs and 1892.16 $/day for per-
formance related penalties) for the +12% run, and of 
3215.22 $/day (1380.24 $/day for running the VMs and 
1834.98 $/day for performance related penalties) for the 
+14% run. This represents a cost increase of 18.71%, 
23.25%, and 23.65% respectively with regards to the refer-
ence configuration. Table III shows the number of VMs 
allocated to each data center for the three different levels 
of request loads evaluated. These results confirm that our 
prototype is very effective in finding good VM placement 
configurations under different operating conditions. 

6.4 Differentiated Service Placement 

In the next experiment, we considered a more complex 
scenario to demonstrate the effectiveness of BDMaaS in 
dealing with multiple service users with different agreed 
𝑆𝐿𝐴𝑆𝑈s. In particular, we considered 5 service users 
grouped in 3 different service classes, namely Gold, Sil-
ver, and Bronze, with the characteristics in Table IV. 

We defined for each service class specific penalties so 
to obtain differentiated guarantees depending of the ex-
pected business impact. Gold customers have a 4,000$ 
𝑆𝐿𝐴𝑆𝑈 violation penalty in case MRT in serving requests 
rises above the 200ms threshold. Silver service users have 
a 2,000$ 𝑆𝐿𝐴𝑆𝑈 violation penalty in case MRT overcomes 
the 250ms threshold. Bronze customers have a 1,000$ 
𝑆𝐿𝐴𝑆𝑈 violation penalty in case MRT trespasses the 300ms 
threshold. In addition, we assume that SU1 and SU3 ad-
dress their request to the Amazon Japan data center, SU2 
to the Amazon Brazil data center, and SU4 and SU5 to the 
Amazon US data center. The fourth column of Table IV 

reports the share of the total number of requests for each 
service user. We also updated the penalization model of 
equation (7) by setting the target value 𝑆𝑅0 to the sum of 
requests expected from the 5 service users. 

The multiple service user problem is significantly 
more complicated than the single service user one be-
cause it requires to consider the allocation of service user-
dedicated VMs. Instead of (significantly) complicating the 
service model to implement support for service user-
dedicated VMs, we decided to address this problem by 
slightly changing the genotype representation. In the new 
representation, each gene represents the number of com-
ponents of the corresponding tier (i.e., Tier 1 and Tier 2) 
allocated for the corresponding service user (i.e., chromo-
some). 

We first empirically verified that a population size of 
128 individuals enabled to effectively explore the new 
and significantly larger search space. So we used that pa-
rameter for all the following experiments. With regard to 
the mutation probability parameter, in this experiment 
we kept using the adaptive control process that proved to 
enable a very effective search in the previous experiments 
(set 𝑝𝑚 to 0.3 at start and reevaluate it every 10 genera-
tions). 

Table V shows the number of VMs allocated to each 
service user for the best solution we observed in this ex-
periment, that resulted in a cost of 9588.37$/day (1588.37 
$/day for running the VMs and 8000.00$/day for 𝑆𝐿𝐴𝑆𝑈 
violation penalty). These results demonstrate the capacity 
of BDMaaS to effectively optimize complex Cloud-based 
IT services with multiple service user. 

6.5. Adaptiveness to Load and Price Variations 

The last set of experimental results has the purpose to as-
sess the capacity of our placement framework to adapt to 
dynamic variations in the operating conditions. In partic-
ular, we simulated three consecutive events: a 20% in-
crease in the request load of US-based service users (SU4 
and SU5), consistent with the start of the office shift in 
USA around UTC+12; a 5% drop in the VM prices of the 
Amazon Japan data center, consistent with the offering of 
spot instance VMs at 95% of the price of on demand ones, 
from Amazon Japan to increase the overnight data center 
utilization around UTC+13 and on the corresponding de-
tection and exploitation of this opportunity by BDMaaS; 
and finally a 25% drop in the request load of Japan-based 
customers (SU1 and SU3), consistent with the end of of-
fice shift in Japan around UTC+14. 

Let us stress that introducing dynamic variations in the 
system operating conditions changes the fundamental na-
ture of the optimization problem, turning it into a dynam-
ic optimization problem, that calls for more sophisticated 
optimization solutions [30]. In particular, researchers 
have dedicated a significant amount of effort to imple-
ment GAs that could effectively deal with dynamic opti-
mization problems, developing a wide range of strategies 
that keep using the population evolved as a reference 
starting point and increase its diversity to allow a wider 
exploration of the search space [31]. 

Upon the reasonable assumption of knowing when a 

TABLE IV. SERVICE USER CHARACTERIZATION. 

SERVICE 

USER 

OPERATING 

IN 

DATA 

CENTER 

REQUEST 

SHARE 

SERVICE 

CLASS 

SU1 ASIA AMAZON 

JAPAN 

10% GOLD 

SU2 SOUTH 

AMERICA 

AMAZON 

BRAZIL 

15% GOLD 

SU3 ASIA AMAZON 

JAPAN 

30% SILVER 

SU4 NORTH 

AMERICA 

AMAZON 

US 

22.5% SILVER 

SU5 NORTH 

AMERICA 

AMAZON 

US 

22.5% BRONZE 

 

TABLE V. OPTIMAL VM PLACEMENT FOR THE DIFFERENTIATED 

SERVICES EXPERIMENT. 

 SU1 SU2 SU3 SU4 SU5 

MEDIUM 39 7 34 42 30 

LARGE 7 11 43 30 21 
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change in the system operating condition occurs – some-
thing that could be easily achieved through a relatively 
simple analysis of request load and the monitoring of 
changes in VM pricing schemes adopted by the data cen-
ters – we can introduce dynamic optimization support in 
our GA by implementing a “reactive” strategy that in-
creases the diversity in the population upon a change de-
tection [32]. In our problem, reactive strategies are indeed 
preferable to proactive ones because the latter cannot as-
sume to know when a change in the operating conditions 
occur and need to preserve diversity in the population. 
Thus, often it requires a significantly higher number of 
evaluations to converge to a good solution (a behavior 
that, as we mentioned above, is undesirable when operat-
ing with simulation-based target functions). 

More specifically, the effective results we achieved 
with a mutation phase based on random geometrically 
distributed variations and on the adaptive control of the 
𝑝𝑚 parameter that determines the mutation intensity, led 
us to implement a hypermutation-based approach to ena-
ble support for dynamic optimization in our GA. Hyper-
mutation is a dynamic optimization strategy developed in 
the context of immune artificial systems research and in-
spired to the behavior of biological cells, that tend to ag-
gressively increase their mutations in response to stress-
ful changes in their environment [28]. The hypermutation 
strategy we implemented in our GA responds to changes 
by immediately setting the value of the 𝑝𝑚 parameter to a 
(low) value HM, thus increasing the intensity of muta-
tions and causing the GA population to enter a “hyper-
mutation” state, and then normally resuming the adap-
tive control of 𝑝𝑚. As we will see shortly, this is a relative-
ly simple but very effective strategy. 

We first evaluated our hypermutation strategy imple-
mentation by analyzing its response to the 20% increase 
in US-based service user requests. Reusing the 128-sized 
GA population produced by the previous experiment as a 
starting point, we experimented with different values for 
the hypermutation parameter: 0.1, 0.2, 0.25, and 0.3. Fig. 5 
shows the results that we obtained, comparing them with 
those returned from a naive optimization approach, i.e., 
running the GA with a random start population. Let us 
underline that the “HM from 0.1” curve exhibits the same 
oscillating pattern observed in Fig. 3 for 𝑝𝑚 = 0.1, corre-
sponding to a strongly explorative behavior of the GA. 

Table VI shows the number of VMs allocated to each 
service user for the best solution we observed in this ex-
periment, that resulted in a cost of 10037.48$/day 
(1753.82$/day for running the VMs and 8283.66$/day for 
performance related penalties). 

The results clearly demonstrate that the hypermutation 
based extension to our GA worked much better than the 
naive approach. As in the first experiment, low values (0.2 
and below) for the 𝑝𝑚 parameter caused an excessive 
amount of changes in the population and led to poor re-
sults. The 0.25 value for the hypermutation threshold HM 

TABLE VI. OPTIMAL VM PLACEMENT FOR THE DIFFERENTIATED 

SERVICES EXPERIMENT AFTER 1ST CONDITION VARIATION. 

 SU1 SU2 SU3 SU4 SU5 

MEDIUM 10 14 38 35 27 

LARGE 13 20 40 36 34 

 

TABLE VII. OPTIMAL VM PLACEMENT FOR THE DIFFERENTIAT-

ED SERVICES EXPERIMENT AFTER 2ND CONDITION VARIATION. 

 SU1 SU2 SU3 SU4 SU5 

MEDIUM 13 14 34 32 25 

LARGE 12 16 41 41 31 

 

TABLE VIII. OPTIMAL VM PLACEMENT FOR THE DIFFERENTIAT-

ED SERVICES EXPERIMENT AFTER 3RD CONDITION VARIATION. 

 SU1 SU2 SU3 SU4 SU5 

MEDIUM 10 13 23 30 28 

LARGE 11 13 32 38 27 

 

  
Fig. 5. Convergence speed of the GA in the differentiated ser-
vice placement experiment after the first variation, using differ-
ent mutation operators. 

 
Fig. 6. Convergence speed of the GA in the differentiated ser-
vice placement experiment after the second and third variation. 
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produced the best results. Table VI shows the number of 
VMs allocated to each service user for the best solution 
we observed after the first variation. 

We then ran also experiments for the other changes in 
the system condition, i.e., the availability of spot instance 
VMs in Amazon Japan at 95% of the price for on demande 
ones and the 25% decrease in requests by Japan-based 
customers, using the 0.25 and 0.3 values for hypermuta-
tion threshold HM. At each step, we primed the GA by 
reusing the population produced by the previous step 
with the corresponding HM value. The results are shown 
in Fig. 6, compared with a run of the GA using a naive 
approach (restarting it from a random population). As 
one can see, the 0.25 value for the hypermutation thresh-
old HM led to the best overall results. Tables VII and VIII 
show the number of VMs allocated to each service user 
for the best solution we observed after the second and 
third variation, that respectively resulted in a cost of 
9950.12$/day (1667.63$/day for running the VMs and 
8282.50$/day for performance related penalties) and of 
9694.02$/day (1346.43$/day for running the VMs and 
8257.59$/day for performance related penalties). 

These results clearly demonstrate that our prototype is 
very effective at dealing with changes in the operating 
conditions of the system and that it was consistently ca-
pable of finding fitter solutions. 

7 RELATED WORK 

Existing efforts span several different areas related to 
business-driven IT management. In the following, with-
out any pretense of being exhaustive, we will first report 
a very brief overview of works focusing on the usage of 
GA per-se for the management of complex dynamic sys-
tems. Then, we will analyze existing solutions in cloud 
management and we will address research efforts specifi-
cally aimed to apply GA techniques to Cloud manage-
ment. A comparison and discussion of those management 
solutions ends the section. 

The literature on evolutionary optimization solutions 
for dynamic problems is very large. For an in depth over-
view, we refer the reader to the recent and excellent sur-
vey [32]. However, the same work reports on growing 
criticism from several well-known researchers, such as 
Ursem et al. [33] and Branke et al. [34], that most of the 
proposed solutions are tested only with theoretical 
benchmarks devised by academics, that do not necessari-
ly represent the behavior of a large class of real-life prob-
lems. Other authors, such as Kramer [30], report that only 
very few studies so far performed a rigorous comparison 
of different parameter control methodologies on the same 
problem, e.g., to evaluate whether the adoption of adap-
tive optimization strategies could actually lead to a reduc-
tion of convergence speed in dynamic systems.  

 Moving to Cloud management, the first seminal ef-
forts in this area tackled service/resource placement with 
different goals, such as minimizing energy consumption 
[1, 2, 3], improving IT performances [5, 35], and reorgan-
izing service schemes to deliver agreed SLAs [6, 7, 36] and 
to let service providers express specific placement con-

straints [6]. Most efforts addressed these goals at the in-
frastructure level (see also the survey [4]) by considering 
mainly internal IT objectives such as 𝑆𝐿𝐴𝑆𝑃s and technical 
requirements (e.g., local CPU, memory at each physical 
host, and communication). We limit our analysis to more 
recent efforts that recognize communication and service 
deployment structure restrictions as very relevant con-
straints that raise the complexity of the VM placement 
problem [5, 6, 35, 36]. In [35] authors formulate structural 
constraint-aware VM placement with three types of con-
straints (i.e., demand, communication, and availability) as 
an NP-hard problem; hence, they propose four approxi-
mation algorithms with related heuristics to solve it in 
feasible time. [36] focuses on the NP-hard problem of 
network-aware VM placement with the goal of reducing 
the aggregate traffic into the data center (e.g., by co-
locating VMs that highly communicate). With a different 
perspective, authors in [5] define an NP-hard VM place-
ment problem (and heuristics to solve it) and solve it in a 
way that minimizes VM relocations and is resilient to dy-
namic traffic time-variations. Finally, in [6] authors ana-
lyze how the number of structural VM placement con-
straints and the data center background load constraints 
affect the solving time of VM placement formulated as an 
Integer Linear Programming (ILP) problem. Although 
adopting an internal perspective and not considering ad-
ditional business constraints, most of these proposals 
tend to either (similarly to our approach) adopt approxi-
mate solutions for dominating problem complexity when 
using accurate models [5, 35, 36], or to find exact solu-
tions to a simplified approximate model [6]. 

Focusing on very recent Cloud management efforts, 
business-driven service placement solutions for large-
scale Cloud environments are the closest works with re-
spect to our proposal. A seminal work in this area is [9], 
that addresses the management of changes to IT infra-

TABLE IX.  SUMMARY AND COMPARISON OF THE SURVEYED 
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 [35] int sta appr   

 [36] int sta appr   

[5] int sta appr   

[6] int dyn exac   

[9] ext dyn exac   

[8] int  dyn exac   

[37] ext sta -   

[38] ext sta -   

[39] int  dyn appr   

[40] ext dyn appr   

[41] ext dyn appr   

Our approach ext dyn appr   
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structure and services to satisfy business goals and to 
minimize costly disruptions on the business, by focusing 
on an interesting real case study about a 2-tier service. 
Several other works have recently started offering virtual-
ized resources and services in the form of Virtual Data 
Centers (VDCs) consisting of VMs connected through vir-
tual switches, virtual routers, and virtual links with guar-
anteed bandwidth. VDC Planner is a recent proposal to 
improve the success rate of VDC mapping by minimizing 
total VM migration costs [8] but, differently from our 
proposal meant mainly for service providers, this pro-
posal is aimed at increasing Cloud provider revenues. 
With a more external service provider perspective, [37] 
presents a comparative analysis of the economic models 
for Cloud computing and traditional in-house IT service 
delivery for emergent and established countries. Similar-
ly, [38] studies cost models and possible cost minimiza-
tion strategies for service placement in federated hybrid 
Cloud environments. These last two proposals are much 
related to our work, but they still lack risk-related aspects; 
in addition, they do not consider large-scale Cloud de-
ployments. 

With regards to solutions that propose to use GA for 
Cloud management, researchers operating in network 
and system management are increasingly turning to-
wards computational intelligence methods for the opti-
mization of the systems they study. This is in line with a 
trend that has emerged in research on complex and dy-
namic systems, where it is becoming more and more con-
venient to analyze systems through simulation instead of 
with analytic methods that are often very complex and 
thus call for simplifying assumptions [23]. [39] presents 
an interesting comparison between a traditional ILP op-
timization method with genetic algorithm and particle 
swarm optimization. The authors conclude that the guar-
antee of finding the best solution of the problem provided 
by ILP is well offseted by its scaling issues as the problem 
dimension grows larger. [40] presents a comparison of 
several different optimization algorithms for the place-
ment of IT service components in federated Clouds with 
dynamic prices, using a relatively simple scheme that 
changes the cost of VM allocations according to the cur-
rently available computational capacity at Cloud data 
centers. However, those works focus on the (static) opti-
mization of systems operating in steady-state and, unlike 
the work presented in this paper, do not consider dynam-
ic optimization aspects. 

In another previous work [41], we attempted to opti-
mize the placement of software components in federated 
Cloud environments using a hybrid GA plus random 
search algorithm. Compared to the GA used in this work, 
the hybrid GA used in [41] allows for a faster exploration 
of the search space at the price of a simplified VM alloca-
tion pattern assumption that might not suit the need of all 
possible IT services. 

Table IX compares above solutions with respect to the 
main design dimensions introduced and considered in 
this paper. While several proposal adopt approximate so-
lutions to dominate problem complexity, it is quite evi-
dent that the external perspective and the adoption of 

business-driven IT management approaches are relatively 
novel, and so there are less systems realizing them. More-
over, although most of considered solutions support dy-
namic optimization our approach is (apart from our pre-
vious work [41], which however has narrower applicabil-
ity) the only one adopting a simulative approach for 
business-driven IT management of Cloud, with inherent 
benefits mitigating possible risks from a business perspec-
tive. 

8 CONCLUSIONS AND FUTURE WORK 

The paper proposed BDMaaS, a business-driven IT ser-
vice placement solution based on genetic algorithm opti-
mization. We realized a prototype and assessed it by col-
lecting several experimental results about a simulated 2-
tier service deployed in a Cloud computing environment 
with multiple data centers. Collected results show that 
BDMaaS is able to evaluate the most promising compo-
nent placement configuration and to dynamically and re-
spond to a wide range of situations from resource pricing 
changes, to support for differentiated requests and quali-
ty levels. BDMaaS engine is available and we believe 
practitioners will benefit from the possibility to use it for 
business-driven placement of their services. 

Encouraged by these results, we are considering sever-
al future research directions: integrating BDMaaS within 
our IaaS management infrastructure based on the Open-
Stack Cloud, to automate the deployment of  dynamically 
evaluated service placement reconfigurations; evaluating 
possible alternative meta-heuristics to GAs; considering 
additional business elements in the risk management 
analysis, such as reliability-related aspects in the service 
component placement choice. 

Another relevant future research goal is the optimum 
selection of a given alternative for a specific component 
among a pool of candidates. In fact, while BDMaaS is al-
ready capable of carrying out this task given a proper de-
scription of IT service, modeling in a realistic way the 
possibility of switching between different SaaS providers 
would require a comprehensive evaluation of many dif-
ferent aspects in decision making, both tangible (cost, per-
formance, compatibility, etc.) and intangible (risk, securi-
ty, etc.) nature, that we are exploring as part of our ongo-
ing efforts to further evolve BDMaaS. 
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