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Abstract—Modern Cloud computing environments are rapidly
evolving, leading to a growing adoption of dynamic pricing for
virtual resources and of speedier deployment tools, and to the
emergence of hybrid Cloud scenarios. These trends suggest the
opportunity to investigate a new generation of Cloud-based IT
services, capable of adapting to changes in their operating con-
ditions and deployment environment by dynamically realigning
their configuration. This calls for new and more sophisticated
management tools, that are capable of evaluating the performance
of alternative configurations for Cloud-based IT services and of
identifying the one that aligns better to the objectives defined by
the business management. This paper presents an optimization
tool for Cloud-based IT services, based on queuing theoretic
analysis of service workflows and ILP optimization.
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I. INTRODUCTION

Cloud computing is evolving from a utility computing
paradigm to a more sophisticated market of virtual resources
with dynamic pricing schemes. In addition, recent improve-
ments of virtualization technologies are providing new tools,
e.g., containers, that enable to substantially decrease the time
required for a service component (de)instantiation [1]. Finally,
hybrid Cloud scenarios are becoming increasingly important,
thus presenting even greater challenges from the service man-
agement perspective [2].

These trends suggest the opportunity to investigate highly
dynamic and adaptive Cloud based IT services, that can
dynamically realign their configuration to match the ever
changing characteristics of modern Cloud environments. This
ambitious objective calls for the development of new and
sophisticated service management tools, that are capable of
evaluating the performance of current IT service configuration
as well as forecasting how alternative configurations would
perform under the same circumstances.

However, given the complex nature of modern IT services,
that implement a large number of workflows on top of many
software components of different types, estimating the impact
that even a simple reconfiguration of the IT service archi-
tecture, e.g., the deployment of a new VM to host a replica
of a software component, will have on the entire IT service
performance represents a major challenge. In addition, man-
agement tools should adopt comprehensive business-driven IT

management criteria that enable to identify the IT service
configurations that are best suited for the delivering the service
quality stipulated with Service Level Agreements (SLAs) with
the minimum amount of spending for resource acquisition [3].

This paper presents a business-driven optimization tool for
Cloud-based IT services, based on stochastic violation penalty
estimation, leverages the M/ΣM/1 queuing theoretic model
that we purposely developed to capture the behavior of IT
service workflows, the approximation of the distribution of
residual times for M/ΣM/1 queues through Gamma distribu-
tion, and ILP optimization. The approch we followed in this
paper represents a different and complementary perspective
with respect to our earlier work [4].

II. STOCHASTIC MODELING AND ANALYSIS OF
CLOUD-BASED IT SERVICES

To allow an analytically tractable IT service model, we
formulate a few simplifying assumptions. First, we assume that
each software component has exponentially distributed service
times and that software components operates independently
from the other - both practices that are commonly proposed
in literature. Then, we assume that requests are processing in
a first-in-first-out (FIFO) order and that no arriving request is
dropped.

This means that the IT service operates as a M/G/1
queueing system where the processing times B(t) are the result
of a sequence of steps Bi(t) with exponentially distributed
arrival times [5]. This queue is similar to a M/Er/1 queue,
a specialization of M/G/1, but with different distribution
parameters [6]. We could not find a name for the system in
literature, so we adopt the M/ΣM/1 nomenclature, to stress
that serving part of the model is sum of exponential random
variables.

Since we are interested in estimating the distribution B(t)
of the service times for the entire workflow. To sum the
contributions of each element to the workflow, we adopt the
mechanisms introduced in [7] and [8]. Let us first consider
a workflow request traversing a set of software components
in a sequential fashion, and requests are inserted in a FIFO
queue in front of the component sequence and extracted when
the components are idle. The service times for the entire



workflow will therefore be the sum of the service times for
each component.

Since we are interested in estimating the distribution B(t)
of the service times for the entire workflow, it is convenient to
switch to frequency domain analysis. The distribution of a sum
of n random variables S = X1 +X2 + · · ·+Xn is convolution
of the distributions of addends Xi:

FS(t) = (FX1
∗ FX2

∗ FX3
∗ · · · ∗ FXn

)(t). (1)

The assumption of exponential distribution for the random
variables Xi enables to significantly simplify equation (1),
leading to [9]:

Lemma II.1. Let X1, X2, . . . , Xn be independent exponen-
tially distributed random variables with parameters 0 <
λ1, λ2, . . . , λn respectively. Then their sum S =

∑n
i=1Xi

has cumulative distribution function B(t) corresponding to the
following probability distribution function:

B′(t) = fS(t) =

n∑
i=1

λi
∏
j=1,n
j 6=i

λj
λj − λi

e−λjt (2)

and:

Proposition II.2. The processing time B(t) of the sequential
workflow with components having exponentially distributed
response time with parameters 0 < λ1, λ2, . . . , λn has dis-
tribution density described by equation (2).

We can therefore use well-known results on M/G/1
queues to calculate the distribution of response times, that also
consider waiting times in addition to the processing times [5].

Proposition II.3. The distribution of the waiting times for the
M/ΣM/1 queue is:

W (t) = (1− ρ)

∞∑
n=0

ρn(R(n) ∗B)(t), (3)

where B is the processing time distribution, R is the residual
processing time distribution defined as

R(s) = λ

∫ s

0

[1−B(u)]du

and R(n)(s) is n-th convolution of the residual processing time
distribution corresponding to the processing of the n requests.

A. Laplace transforms and Gamma approximation

The direct evaluation of equation (3) is usually performed
through approximation, by limiting the calculation to the com-
ponent of order n in the sum. In turn, the single components
R(n) ∗ B are calculated either through the direct evaluation
of the convolution or through the application of the Laplace
transform.

In our attempts to directly evaluate convolutions, we en-
countered severe oscillations in the calculated density function
of W (t), as illustrated by Fig 1. The figure shows how the
oscillations start to become evident in the curve of order 9

Fig. 1. Approximation of waiting time distribution through direct evaluation
of convolutions (dwl-n represents the approximation of order n).

Fig. 2. Numerical calculation of the R(n) component through Laplace
transform (prdf-n) and Γ distribution based approximation (g-n).

and become excessively high for practical application in the
curve of order 15.

Similar situation arises in case of evaluating (3) using
Laplace transforms. For the convolutions of order n >= 9,
we encountered the loss of significant digits as mentioned in
[10], due to the fact that Laplace transform has an (absolutely
continuous) spectrum coinciding with the interval [−

√
π,
√
π],

and generalized eigenvalues of the form λ±s = ±
√

π

cosh(πs)
.

This implies that inverse Laplace transform is unbounded, thus
leading to the fast growth of increasing osculations and, hence,
loss of significant digits. This may also indirectly explain what
we observed while evaluating convolution of order n > 9.

To avoid the loss of precision we used a more robust cal-
culation approach based on the approximation of the residual
distribution through the Γ (Gamma) distribution. We chose the
Γ distribution as it allows a good approximation and has the
very convenient property that convolutions of Γ are easy to
calculate. Fig. 2 illustrates the quickly improving approxima-
tion of the R(n) component by appropriate Γ distributions and
high oscillation in the component of order 10 evaluated using
Laplace transforms.

We use the method of moments to infer the parameters
of the approximating Γ distribution. In a M/G/1 queue with



service time distribution B, the moment of order m of the
residual service time distribution R is [6]:

E(Rm) =
E(Bm+1)

(m+ 1)E(B)
. (4)

Since the n-th convolution of the residual service time
distribution R(n) corresponds to sum of n independent random
variables each having distribution R, we have:

E(R(n)) = nE(R) = n
E(B2)

2E(B)
, (5)

V ar(R(n)) = nV ar(R) = n
E(B3)

3E(B)
− n(

E(B2)

2E(B)
)2. (6)

Formulae (5) and (6) highlight the elegance of the ap-
proximation of R(n) with Γ distributions. Once we found
the parameters of Γ through the method of moments, then
the parameters of the convoluted Γ (which are very easy to
calculate) correspond to the convolution of R approximation
found by the method of moments. Therefore, we can formulate
the following:

Lemma II.4. 1) The distribution of waiting times for
the M/ΣM/1 queue is approximated by:

W̃ (t) = (1− ρ)

∞∑
n=0

ρn(Γ(nα, β) ∗B)(t), (7)

where

β =
E(B2)

E(B3)
; α =

(E(B2))2

E(B)E(B3)
,

2) Using the method of moments, the α and β parame-
ters in equation (7) can be inferred by the following
equations:

β =
p2 + p21

2p3 + p1p2 + p31
; α =

(p2 + p21)2

p1(2p3 + p1p2 + p31)
,

where

pk =
m∑
i=1

1

λki

and 1/λi is the average processing time for i-th
component.

B. Non-sequential workflows and non-exponential service
times

The results presented above can be extended to the case
of generic, i.e., non-sequential, workflows as defined in [11].
To this end, it is possible to use the composition formulas
presented in [12] and approach developed in [7] [8].

In addition, the method described above works even in
case the assumption of exponential service times is relaxed.
More general distributions and workflows evaluation of the
processing time may be considered using simulation, obtaining
the resulting response time distribution and then separating the
request arrival time and processing time components.

The full exploration of these research directions goes
beyond the scope of this paper and is left for future work.

C. Estimation of SLA violation probabilities and costs

We are then interested in devising a method that, given an
SLA, estimates the expected amount of violation penalties for
a service configuration starting from the approximated waiting
time distribution W̃ obtained from equation (3).

For instance, let us consider an SLA S1 that triggers a
violation in case the 95th percentile of service requests is larger
than 2 seconds or in case the maximum service request time
could be greater than 5 seconds. We then define:

p1 = FW̃ (T > 2secs)

and:

p2 = FW̃ (T > 5secs).

To evaluate the probability that for N = 10000 requests at
most a portion 0 < r < 1 (or rN requests) will have response
time greater than p1, we use the binomial distribution:

pr,N,p1 = Pr (Y > rN) = 1−
rN∑
i=0

(
n

i

)
pi1 (1− p1)

n−i
, (8)

where Y is the number of requests whose execution requires
a time larger than 2 seconds. The expected loss is then the
product of SLA violation cost and pr,N,p1 .

D. Constrained Optimization

The results of equations (7) and (8) can be tabulated and
used as input in a constrained optimization problem (COP),
whose solution represents the optimal configuration for the IT
service. We solve the constrained optimization problem using
the CPLEX solver, formulating it as follows.

We assume to have a predefined set of data center types
DCT and server types ST , and characterize each data center
DC[DCT ][ST ] as a structure containing DCT and a number
SC[DCT ][ST ] of available servers. The cost for VM instanti-
ation is described by CS[DCT ][ST ] cost per data center and
VM type. The different worflow components are described by
their type COT . Different workflows are described by their
type FlT , which in turn is a sequence of COT s of length
LFlT .

The constraints for the instantiation of software com-
ponents in VM types that support their minimum re-
source requirements are modeled by the boolean matrix
CTR[ST ][COT ]. The expected loss per deployment per work-
flow is tabulated by the matrix L[FlT ][ST ][COT ]. The IT
service workload is a mixture of workflows M [FlT ]. A
configuration deploys a set of components in the union of the
workflow per workload. A deployment is represented by the
boolean dynamic variable x[DCT ][ST ][SC].

The COP can then be formulated as the minimization
of workload deployment cost satisfying constraints on VM



instantiation:

min
∑
i in
F lT

M [i]×
∑

(k,l,m) in
DCT×ST×SC

(x[k][l][m]∗CS[k][l]+L[i][l][m])

(9)
subject to

x[k][l][m] ≤ CTR[l][m] (10)∑
(k,l,m) in

DCT×ST×SC

x[k][l][m] ==
∑

i in F lT

LFlT [i]. (11)

As CPLEX allows to start the optimization from a prim-
ing point, effectively implementing a continuous optimization
process, it is possible to envise the adoption of a component
that could monitor the current IT service state and trigger a
new optimization if needed. At the same time, it is possible
to envise an actuator component that takes in input the result
of the optimization process and reconfigures the IT service
accordingly.

III. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of our IT service configua-
tion optimization solution, we consider a single sequential 4-
step workflow, where requests go through a Web Server (WS),
an Application Server (AS), a Financial Transaction Server
(FTS), and finally a Persistent/Database Storage layer (PS).

We assume that the processing times for each component
are exponentially distributed, with the service rate parameter
λi varying for each component type and VM type used for its
instantiation. We consider a processing response time for the
WS component instantiated on “small” VMs of 0.045 seconds,
for “medium” VMs of 0.030 seconds, etc. We also assume that
on “large” VMs the response times are: for AS - 0.060 seconds,
for FTS - 0.090, for PS - 0.025 seconds.

Table I shows a (tiny) portion of the results we obtained,
that illustrates the dependency of the expected loss due to SLA
violations from the service times, which in turn depend on VM
type used to instantiate the components.

TABLE I. SAMPLE OF LOSSES PER WORKFLOW
DEPLOYMENT/RESPONSE TIMES

Service rate (secs)
Expected penalty (USD)

WS AS FTS PS

0.01 0.045 0.04 0.02 0.0 $

0.01 0.06 0.09 0.025 4.338*10−9 $

0.01 0.08 0.09 0.025 1.081365 $

0.030 0.06 0.09 0.025 0.002012 $

0.045 0.06 0.09 0.025 8.718848 $

0.045 0.08 0.09 0.025 6698.311 $

After calculating the distribution function W of waiting
times, we set N = 10000, r = 0.0075 and use equation (8),
meaning that we use binomial distribution to estimate the prob-
ability of having more than 0.75% of response times within
a given time period (e.g., 1 hour) to be over 2 seconds. The
traffic intensity ρ = 0.65 corresponds to about 3 requests per
second or over 10000 per hour. The probability of having over
75 requests in over 2 seconds category is about 0.000872, and

the expected loss due to SLA violation penalties amounting to
10000$ in this case is slightly less than 9$.

We use VM costs from Table III in [4] as VM costs
CS and apply COP from section II-D to find statistically
optimal deployment of workflow. The optimal configuration
we obtained corresponds to the 4th line in Table I {WS -
medium, AS - large, FTS - large, PS - large} deployed at US
East datacenter with the expected cost of deployment around
0.85$ per hour.

In this experiment, it is clear that using using more pow-
erful/expensive VMs will just increase IT related spending; at
the same time the adoption of less powerful VMs will increase
costs related to expected SLA violation penalties.

IV. CONCLUSIONS AND FUTURE WORK

The present paper represents a first exploration in the
optimization of Cloud-based IT service configuration through
queuing theoretic models and ILP based optimization. The ex-
perimental results we presented demonstrated the effectiveness
of our solution when applied to sequential service workflows.
Future work will focus on the application of the techniques and
tools introduced in this paper for the optimization of IT ser-
vices that implement complex and non-sequential workflows.
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