
An Adaptive and Efficient Peer-to-Peer Service-oriented
Architecture for MANET Environments with Agile Computing

Niranjan Suri1,2, Massimiliano Marcon1,3, Raffaele Quitadamo1,4, Matteo Rebeschini1, Marco Arguedas1,

Stefano Stabellini1,3, Mauro Tortonesi3, Cesare Stefanelli3
1 Florida Institute for Human & Machine Cognition

2 Lancaster University
3 University of Ferrara

4 University of Modena and Reggio Emilia
{nsuri,mmarcon,rquitadamo,mrebeschini,marguedas,sstabellini}@ihmc.us

{mtortonesi,cstefanelli}@ing.unife.it

Abstract–Realizing adaptive and efficient peer-to-peer

Service-oriented Architectures for MANET environments
is a challenging problem. In particular, robust and
efficient service discovery and service migration are
critical in the constantly changing and bandwidth limited
MANET environments. In these scenarios, service
migration lays the foundation for self-adaptive
architectures. This paper describes the agile computing
approach to peer-to-peer service discovery and service
migration and provides a performance evaluation of these
functions in the context of the Agile Computing
middleware. The experimental results presented in the
paper show that applications built on top of the Agile
Computing middleware are capable of opportunistically
exploiting transient computing resources in the MANET
environment.

Index Terms–Agile Computing, Peer-to-Peer, Service

Discovery, Service Migration, Service-oriented
Architectures, JXTA.

I. INTRODUCTION
Service-oriented Architectures (SoAs) are a popular

approach for designing and building networked and distributed
systems. SoAs allow the realization of complex distributed
applications through the composition of services according to
the definition of a specific business process. This approach
offers the opportunity for both extensive service reuse and the
integration of heterogeneous services, with significant savings
in distributed applications development costs and time.

Most SoAs were designed to operate on either corporate
networks or in the Internet environment, with the purpose of
separating business processes and rules from the
implementation of basic service functions. Hence, traditional
SoA implementations are based on centralized service
directories and make strong assumptions about relatively static
network topologies, large bandwidth availability, and high
network stability.

However, a growing interest in running SoAs in MANET
environments has recently emerged. In fact, SoAs allow the
dynamic (re)composition of services at run-time, thus enabling
the ad-hoc realization of complex distributed applications. In

addition, SoA-based applications build on top of lean and
modular services, which are better suited for deployment on
mobile and resource-constrained nodes than traditional
heavyweight services. Finally, the modular architecture of
SoA-based applications allows for the dynamic replacement of
services, therefore enabling application adaptation to the
constantly changing network topology of MANETs.

Unfortunately, the realization of SoAs in MANETs is a
very challenging task which requires a significant re-
engineering of existing SoA platforms. In particular, the
MANET environment is not well suited for the deployment of
traditional centralized service broker(s) and bandwidth
intensive protocols such as SOAP. One requirement is a
decentralized and distributed peer-to-peer approach to service
discovery, which can efficiently find service instances and
select the best suited ones for exploitation, such as those
satisfying topological proximity and/or reliability constraints.
Also, dynamic service migration is an effective approach to
improving performance and availability of services in the face
of frequent variations in network topology and resource
availability. Finally, in MANET environments, bandwidth is
typically very scarce, thus imposing strict efficiency
constraints on signaling protocols involved in service
discovery, migration, and invocation.

There is a growing effort from both industry and academia
to develop solutions for SoAs in MANET environments [1]
[2]. However, it is still unclear whether these proposals enable
the SoA architectural style to deliver satisfying performance
levels in MANETs. Moreover, they do not address service
migration as a means of adaptation. As a result, there is still a
need to gather some insights on the performance and
efficiency of state-of-the-art solutions.

This paper describes and experimentally evaluates two
aspects of SoAs – service discovery and service migration.
The Agile Computing middleware is our solution for the
realization of SoAs specifically designed to operate in
MANETs. It is based on a peer-to-peer architecture and on an
adaptive and opportunistic paradigm for resource/service
discovery and exploitation, which we have called agile
computing. In particular, the paper focuses on the dynamic
service discovery and service deployment, activation, and
migration functions of the Agile Computing middleware,

978-1-4244-2067-4/08/$25.00 ©2008 IEEE. 364

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 14:15 from IEEE Xplore. Restrictions apply.

which are respectively provided by the Group Manager [3]
and AgServe components [4].

This paper experimentally compares the performance of
the Group Manager with Sun Microsystems’ JXTA
Technology [5] [6]. While JXTA was not designed for
MANET environments, and other papers describing its
inadequacies have been published [7], it continues to be a
popular platform for peer-to-peer systems [8]. Moreover,
JXTA has been selected to provide the peer-to-peer discovery
service for the System of Systems Common Operating
Environment (SOSCOE) for the U.S. Army’s Future Combat
Systems (FCS) initiative1, which is also one of the target
environments for the Agile Computing middleware, thereby
making such a comparison fair.

This paper also presents some performance results for
service migration in AgServe, which enables load-balancing,
fault-tolerance, and the application of autonomic computing
principles to SoAs.

II. AGILE COMPUTING
Agile computing is a novel metaphor for distributed and

networked systems. It emphasizes designing systems to be
opportunistic in discovering and exploiting resources in a
dynamic environment as well as being able to quickly adapt to
changes in such an environment. The word agile is used to
highlight both the rapid discovery and exploitation of
resources and the ability to take advantage of highly transient
resources.

The Agile Computing middleware is a specific
implementation of the agile computing metaphor that proposes
a peer-to-peer approach for the realization of SoA-based
distributed applications in the MANET environment. The
middleware consists of six major components: a) the Agile
Computing Infrastructure (ACI) Kernel, b) the Group
Manager, c) the Service Manager, d) Mockets, e) AgServe,
and f) FlexFeed. Figure 1 shows the overall architecture for
the middleware.

The ACI Kernel provides the container functionality for
hosting and executing services. It also instantiates and
contains the Group Manager component, which supports
dynamic resource and service discovery. The Service Manager
provides service matching functions on top of the Group
Manager, providing applications with a convenient interface
based on XML and XPath. Mockets is a communications
library providing several advanced features that were
purposely designed for the MANET environment. The
endpoint migration capability of Mockets is particularly
relevant to the service migration capability described in this
paper. AgServe provides support for dynamic deployment,
activation, and migration of services. Finally, FlexFeed is a
publish-subscribe system that handles hierarchical data

1 See Sun Microsystems’ Announcement “Global
Governments and Industry Partners Rely on Sun
Microsystems to Achieve Security and Scalability” at
http://www.sun.com/smi/Press/sunflash/2005-
05/sunflash.20050503.5.xml

dissemination, policy-based transformation of data, and in-
stream data processing.

Figure 1: Agile Computing Middleware Architecture

This paper focuses on the Group Manager and AgServe

components, which are further described in sections III and
IV. More information about agile computing, Mockets, and
FlexFeed is available in [9], [10], and [11] respectively.

III. GROUP MANAGER
The Group Manager is an application-level component that

supports resource and service discovery. It enables the agile
and opportunistic exploitation of resources by optimizing
queries to find nodes in network proximity and/or nodes that
are resource rich or have excess capacity.

The Group Manager supports proactive advertisement,
reactive search, or a combination of the two. The search is
realized using a Gnutella-like or probabilistic search
mechanism. In addition, the radius (in terms of network hops)
of the advertisement or search can be controlled on a per
request basis, providing a powerful mechanism to control how
strongly or weakly a service may be advertised and how far a
search request may travel. In the simplest case, distance is
defined as the number of hops in a MANET environment, but
can be a more application relevant parameter such as
bandwidth or latency.

Propagation of the advertisement and search messages
occurs via one of three mechanisms – UDP broadcast (the
simplest case), UDP multicast, or via the XLayer Framework
that provides bandwidth-efficient flooding [12]. In addition,
tunneling via TCP supports bridging multiple networks. In all
of these four cases, each node may selectively rebroadcast an
incoming message to provide control over the radius.

365

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 14:15 from IEEE Xplore. Restrictions apply.

These capabilities enable applications to make tradeoffs
between discoverability, bandwidth, and latency. Proactive
advertisement uses more bandwidth but reduces the latency
when a client needs to find a service and vice-versa. On
another dimension, a service that is widely present in a
network does not need to advertise strongly (or, consequently,
a client looking for such a service does not need to search
widely) as opposed to services that are scarce.

Groups may be used to partition network nodes into
different sets thereby restricting advertisements and queries.
The Group Manager provides support for two different group
types: peer groups and managed groups. Peer groups are
completely decentralized: they do not have an owner or
manager, but instead maintain node membership
independently from the perspective of each node. This design
choice also implies that there is no attempt at maintaining a
consistent group view for all nodes that are members of a peer
group. In addition, no special mechanism is required in order
to join a peer group. Nodes can simply query or register
resources and services in the context of a specific peer group
and will implicitly be treated by the Group Manager as
members of the same peer group.

The decentralized and dynamic nature of peer groups make
them very well suited for resource and service sharing in
MANET environments. However, for additional flexibility,
the Group Manager also supports centralized resource and
service management by means of managed groups. A
managed group is created by a particular node and is owned
by that node. Other nodes need to explicitly join a managed
group by sending a membership request to the group owner
node.

Access to groups (of both peer and managed types) may
optionally be restricted using a password, thereby preventing
nodes that do not possess the necessary authorization
credentials from joining a specific group.

The Group Manager API has been designed to be
extremely simple and generic, facilitating its use in a wide
range of applications. For example, the ACI Kernel uses the
Group Manager to propagate node resource information, the
Service Manager uses it to publish services in XML and
search for services using XPath queries, and FlexFeed uses the
Group Manager to find data sources for subscribers. Versions
of the Group Manager are available for both Java and C++,
and operating at the application layer facilitates easy,
piecewise integration into existing applications. All of the
above features combine together to make the Group Manager
well suited to MANET environments. More information about
the Group Manager component is available in [3].

IV. AGSERVE
The AgServe component supports a Service-oriented

Architecture on top of the Agile Computing Middleware.
AgServe supports dynamic definition, instantiation,
invocation, relocation, and termination of services. The
underlying middleware monitors service resource utilization,
invocation patterns, and network and node resource

availability and uses that information to determine optimal
initial placement and subsequent migration of services.

AgServe supports dynamic deployment of services by
exploiting mobile code. Clients may define new services
dynamically, thereby injecting new capabilities into the
network. These services are packaged as self-contained
archives that include all the necessary Java class files and
other related JAR files. These service archives are
dynamically distributed (pushed) to other nodes using the ACI
Kernel functions for remote service installation. Policies may
be used to control and manage service implementations as
required for security purposes.

AgServe also allows activating services on remote nodes.
Service activation is normally triggered by application-driven
service invocation requests. AgServe takes advantage of the
ACI Kernel functions to instantiate the specified service on the
target node. Once activated, the service is identified by a
unique identifier that is returned to the client stub, which is
subsequently used for service invocation.

In addition, AgServe extends the ACI Kernel service
container functions to provide transparent service migration. A
service running inside the service container can be
asynchronously stopped, its execution state captured, moved
to a new service container (usually on a different node), and
then restarted. This migration process is transparent to both
the service itself and the client utilizing the service.

AgServe can take advantage of two Java-compatible ACI
Kernel service containers, respectively based on the Aroma
VM [13] and the JikesRVM [14], which support transparent
service migration for services implemented in Java. The
JikesRVM container uses Mobile JikesRVM [15], an
enhanced version of the IBM JikesRVM with the ability to
capture the execution state of Java threads and re-establish it
transparently on another node. The execution of the service
will then continue at the very next bytecode instruction on the
new node.

The ACI Kernel builds a resource utilization profile for
each service, keeping track of the CPU utilization and of the
bytes sent and received over the network for each invocation.
The ACI Kernel includes a coordination component that uses
this resource profile information, along with the resource
availability information from other nodes, to migrate service
instances between nodes. In particular, it exploits a heuristic
coordination algorithm to perform service (re)allocation on a
continuous basis. The checkpointing capabilities of Aroma
and Mobile JikesRVM, combined with the endpoint migration
capability of Mockets, allows service instances to be migrated
in a manner completely transparent to the clients, even in the
midst of a service invocation.

Service migration differentiates AgServe from other SoAs.
Service migration allows AgServe to react to environmental
changes and is crucial to realize the goal of agility. For
example, as nodes with free resources become available,
service instances might be migrated from heavily loaded
server nodes to other nodes, thereby improving the overall
performance of the system (self-optimizing behavior). Service
migration also allows the system to react to accidental events,

366

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 14:15 from IEEE Xplore. Restrictions apply.

such as a power loss or an incoming attack (survivability
behavior).

AgServe uses the Service Manager functions to support
dynamic service definition, registration, lookup, and
invocation. In fact, the dynamic activation and migration of
service instances raises the need to augment traditional service
descriptions with meta-information such as location of service
implementation code, resource utilization profile, and the
communications profile. Currently, each ACI Kernel
maintains a database of services and their resource utilization
information. While this aspect has not yet been realized, the
resource utilization profile and other meta information could
be embedded into the WSDL description for the service and
packaged as part of the service archive. In addition, service
registration, lookup, and invocation operations have been
modified in order to support dynamic changes in service
locations. More information about AgServe can be found in
[4].

V. EXPERIMENTAL RESULTS
Three experiments were conducted to evaluate the

performance of the agile computing middleware. The first two
experiments compare the service discovery capability in the
Group Manager component with JXTA. The third experiment
evaluates the service migration capability provided by
AgServe.

A. Service Discovery Experiments
The first experiment used a scenario with three nodes in an

ad-hoc network to perform the evaluation of service discovery.
The scenario is based around two UAVs and one ground
vehicle, as shown in Figure 2. The two UAVs are providing a
service that the client on the ground wishes to use. The UAVs
advertise the service periodically and the client looks up the
service periodically. As the UAVs move, they come into and
go out of communications range with the ground vehicle.

The independent variables in this first experiment were the
connectivity between the three nodes, the time interval
between service advertisements by UAV1 and UAV2, and the
time interval between service lookups by the client. The
dependent variables were the ability for the client to discover
the service and the bandwidth utilized. Since there was no
discernible difference between JXTA and the Group Manager
in terms of the client’s ability to discover the service, only the
bandwidth utilization results are reported.

The experiment was set up using three machines running
NISTNet [16] to simulate the connectivity between the three
nodes as the UAVs move. The UAVs complete one loop in 60
seconds. The UAV paths were synchronized in such a way
that when UAV1 is closest to the ground vehicle, UAV2 is
farthest from the ground vehicle. Note that in this setup, there
is no connectivity between UAV1 and UAV2.

The connectivity between the UAVs and the client has
been broken into four phases:

1. 40 seconds: the UAV is unreachable by the client
(packet drop ratio set to 100%)

Figure 2: Scenario for Experiment One

2. 7 seconds: the UAV is approaching the area of

maximum radio covering (packet drop ratio of 30%)
3. 6 seconds: the UAV is closest to the client (packet

drop ratio 10%)
4. 7 seconds: the UAV is leaving the area of maximum

radio covering (packet drop ratio of 30%)
JXTA has been configured in two different modes. In the

first configuration, each node has been configured as a JXTA
Rendezvous Peer, and therefore it can share its advertisements
cache with other Rendezvous Peer nodes and propagate
queries. In the second configuration, each node has been
configured as a JXTA Edge Node and relies exclusively on
multicast queries for service discovery. The Service Manager
was used over the Group Manager for service matching. Peers
running JXTA or the Group Manager have been configured
without service caching.

The results are shown in Table 1. JXTA-RV is the
configuration using Rendezvous Peers. JXTA-E is the
configuration using only Edge Nodes. GM-PI is the default
group manager configuration, with PING and INFO packets
enabled. GM is with the PING and INFO packets disabled.
The PING packet is used to detect node loss / disconnection,
whereas the INFO packet is used to proactively push data.
Neither of these capabilities is provided by JXTA, so it would
be reasonable to disable them in the Group Manager for a fair
comparison.

The results show the network traffic in bytes per second
introduced by service discovery operations in each of the four
configurations. Each node may generate traffic that is
multicast to all the other nodes (shown in the multicast
column) or addressed to a specific target node. The totals
indicate the overall bandwidth utilization. The results show
that JXTA uses 2.98 to 18.84 times more bandwidth than the
Group Manager. In particular, in the best-suited configuration
modes for this scenario, GM and JXTA-E respectively, JXTA
uses 6.94 times more bandwidth than the Group Manager.

The second experiment used a scenario with five nodes
instead of three – two UAVs and three ground vehicles. Also,
in this scenario, the UAVs were the clients looking for
services while the ground vehicles were the servers

UAV 1 Both UAVs publish Service every 10 seconds
using JXTA or the Group Manager

UAV 2

GV
Looks for Service every 10 seconds

367

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 14:15 from IEEE Xplore. Restrictions apply.

advertising the services. The ground vehicles advertised the
services at different times, in order to vary the results obtained
by the UAVs when they queried for a service. In particular,
GV1 advertised the service every 10 seconds. GV2 advertised
a service for 10 seconds and stopped for 3 seconds before
repeating the cycle. GV3 advertised a service for 10 seconds
and stopped for 5 seconds before repeating the cycle. The
UAVs queried for the service every 10 seconds.

TABLE 1

THREE NODE JXTA – GROUP MANAGER COMPARISON
System/
Sender Multicast GV UAV1 UAV2
JXTA-RV
GV -- -- 731 581
UAV1 -- 1817 -- --
UAV2 -- 1206 -- --
Total 4335
JXTA-E
GV 430 -- 20 12
UAV1 188 370 -- --
UAV2 188 389 -- --
Total 1597
GM-PI
GV 183 -- -- --
UAV1 103 73 -- --
UAV2 103 73 -- --
Total 535
GM
GV 84 -- -- --
UAV1 -- 73 -- --
UAV2 -- 73 -- --
Total 230

Destination

Bandwidth Utilization in Bytes per Second

The connectivity between the UAVs and the ground

vehicles was the same as before – no connection for 40
seconds, followed by 7 seconds with 30% packet loss, 6
seconds with 10% packet loss, and another 7 seconds with
30% packet loss. There was no connectivity between UAV1
and UAV2 while there was continuous connectivity between
the three ground vehicles.

The results are shown in Table 2. The four configurations,
JXTA-RV, JXTA-E, GM-PI, and GM are the same as before.
The results show the network traffic in bytes per second, both
multicast traffic generated from each node as well as point-to-
point traffic between any two nodes. Once again, the Group
Manager significantly outperforms JXTA, with JXTA using
2.36 to 49.17 times more bandwidth. Again, using the best
possible configuration for each component, JXTA uses 9.55
times more bandwidth.

While these two experiments provide only two data
points, it is still worth looking at the trend in terms of
bandwidth utilization when increasing the size of the network
from three to five nodes. Figure 3 plots the bandwidth

utilization for all four configurations. As the figure indicates,
the bandwidth utilization increases substantially for JXTA in
Rendezvous mode. Even JXTA in Edge mode shows a larger
rate of increase than either of the Group Manager
configurations. With the Group Manager in the optimal
configuration, there is a very small increase in the bandwidth
utilization.

TABLE 2

FIVE NODE JXTA – GROUP MANAGER COMPARISON
System/
Sender Multicast GV1 GV2 GV3 UAV1 UAV2
JXTA-RV
GV1 28 -- 762 1854 325 118
GV2 10 638 -- 636 214 130
GV3 214 4153 738 -- 303 972
UAV1 206 130 385 299 -- --
UAV2 215 104 77 522 -- --
Total 13031
JXTA-E
GV1 187 -- -- -- 19 25
GV2 188 -- -- -- 205 243
GV3 430 -- -- -- 20 318
UAV1 -- 6 -- -- -- 430
UAV2 -- 17 12 -- -- 430
Total 2531
GM-PI
GV1 103 -- -- -- 73 72
GV2 103 -- -- -- 58 103
GV3 103 -- -- -- 49 49
UAV1 177 -- -- -- -- --
UAV2 181 -- -- -- -- --
Total 1071
GM
GV1 -- -- -- -- 73 73
GV2 -- -- -- -- 58 58
GV3 -- -- -- -- 50 49
UAV1 83 -- -- -- -- --
UAV2 83 -- -- -- -- --
Total 265

Destination

Bandwidth Utilization in Bytes per Second

As part of future work, we intend to measure the

performance with additional nodes to develop a more accurate
trend for bandwidth utilization as a function of the number of
nodes.

B. Service Migration Experiment
The third experiment shows the benefits of

opportunistically taking advantage of transient resources and
measures the overhead of service migration. Figure 4 shows
the experimental scenario, which consists of a number of
client nodes, and a smaller number of servers and transient
nodes (i.e., nodes that become available for short periods of

368

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 14:15 from IEEE Xplore. Restrictions apply.

time during which their resources are opportunistically
exploited).

Bandwidth Utilization

0

2000

4000

6000

8000

10000

12000

14000

Three Nodes Five Nodes

Number of Nodes

B
yt

es
 /

se
c

GM GM-PI JXTA-E JXTA-RV

Figure 3: Bandwidth Utilization Trend

`

Clients Continuously Available Servers

Transient Nodes

Service
Migration

Initial Deployment
and Invocation of

Services

Service
Migration

And
ReturnService

Completion
And Return

Figure 4: Service Migration Scenario

For this experiment, two client nodes, one server node,

and one transient node were utilized. The two client nodes
continuously invoke a CPU intensive factorization service,
thereby overloading the only available server node. When a
transient node becomes available, the middleware detects its
presence and transparently migrates one of the service
instances to the transient node. When the transient node is
about to become unavailable (e.g., being shutdown), the
service is migrated back to the server node. Note that the
shutdown of the node is recognized by the middleware by
means of a shutdown handler hook installed in the OS.

A transient resource may become unavailable in one of
the following three ways:

• The node is undergoing a controlled shutdown,
because some critical condition has been detected. In
this case, the service migration must be as fast as
possible to achieve survivability.

• The node transitions from a previously idle state to a
busy state, e.g. because the owner of the node is now
utilizing it. The resource is thus no longer free and
the service must return back to a server node or move
to another idle transient node.

• The quality of the network link (e.g. wireless) used
by the node is degrading with respect to its past
experience level, as reported by the XLayer
framework. The service should then migrate
immediately to keep on serving the client from
another “more reachable” node.

Currently, an abrupt failure of the node or the
communications link to the node is fatal to the service and the
middleware does not support recovery from such an
occurrence.

Table 3 shows the results of the service migration on the
performance of the service from the client’s perspective. The
independent variable in this experiment is the duration of time
for which the transient node is available. The dependent
variables are the turnaround times for the service invocation
from the two clients.

TABLE 3
SERVICE MIGRATION PERFORMANCE RESULTS

Transient Node Service #1 Service #2 Overall
Time (ms)

0 98362 98570 98570
5000 99421 100171 100171

10000 96683 97337 97337
15000 92019 93443 93443
20000 88990 89203 89203
30000 79324 81220 81220
40000 75322 78208 78208
50000 64870 70686 70686
60000 58614 66706 66706
70000 58218 64826 64826

Baseline time for service execution - 54760 ms

(Execution Time in ms)

Service Execution Time in case of Service Migration to a

Transient Node

The time to execute the service, if there is no other load
on the server node, is 54,760 ms. If two clients simultaneously
execute the service and there is no transient node to exploit,
the overall time for both clients to finish is 98,570 ms. When
the transient node is available for 5 seconds, the overall time
actually becomes worse (100,171 ms), which is an indication
of the overhead of service migration. However, as the
availability of the transient node increases, the overall
performance improves. The break-even point is around 8
seconds, which is a measure of the overall agility of the
system. It is the shortest length of time for which an
opportunistic node may be exploited without any performance
degradation. If a transient node is available for a longer length
of time, the middleware shows a positive performance
improvement. The ACI kernel decides whether a transient
node is a suitable candidate for service migration using a

369

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 14:15 from IEEE Xplore. Restrictions apply.

probabilistic model based on the past availability time of
nodes and on the estimated execution time of the service.

Tables 4 and 5 and Figure 5 below provide details about
the overhead costs of service migration. The overhead is
characterized by the following operations:

• Time needed to detect a new node on the network
(Detection time)

• Time needed by the server node to decide to migrate
a service (Local Coordinator time)

• Time needed to capture the execution state of the
service (RVM Capture time)

• Time needed to package the state as a DIME2
message to send to the opportunistic node (DIME
Packaging time)

2 DIME (Direct Internet Message Encapsulation) is a proposed
internet standard for the transfer of binary and other
encapsulated data over SOAP or HTTP. A DIME message is
composed of one or more DIME records. Each DIME record
has a small header with meta-information that describes the
record.

• Time needed to transfer the DIME message (Transfer
time)

• Time needed on the opportunistic node to receive and
process the request to host the migrated service
(Local Coordinator time 2)

• Time needed on the opportunistic node to restore and
restart the service (RVM Restore time)

As the data indicates, the most variable component of the
overhead (and the largest in some cases) is node
detection. The proactive advertisement capability of the
group manager is used to push information about resource
availability at the opportunistic nodes. These nodes
advertise via a periodic PING message generated by the
Group Manager once every 1000ms. Therefore, the
discovery time could range upto 1000ms, depending on
when (within the advertisement cycle) the opportunistic
node becomes reachable over the network. When an
overloaded server node receives an advertisement from
another node indicating resource availability, the server
node triggers migration of a service, which includes the
operations listed earlier.

TABLE 4
OVERHEAD FOR DIFFERENT STAGES OF SERVICE MIGRATION

Run Detection Local Coord. RVM Capture Packaging Dime Transfer Rem. Coord. RVM Restore Total
1 53 1 192 5 16 2 240 509
2 31 1 213 3 19 2 241 510
3 702 1 264 5 21 2 218 1213
4 466 1 128 6 23 2 237 863

All Times in Milliseconds

TABLE 5
OVERHEAD FOR DIFFERENT STAGES OF SERVICE MIGRATION AS A PERCENTAGE OF TOTAL TIME

Run Detection Local Coord. RVM Capture Packaging Dime Transfer Rem. Coord. RVM Restore
1 10.41 0.20 37.72 0.98 3.14 0.39 47.15
2 6.08 0.20 41.76 0.59 3.73 0.39 47.25
3 57.87 0.08 21.76 0.41 1.73 0.16 17.97
4 54.00 0.12 14.83 0.70 2.67 0.23 27.46

Run 1 Run 2 Run 3 Run 4

Figure 5: Visual Representation of Overhead for Different Stages of Service Migration

370

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 14:15 from IEEE Xplore. Restrictions apply.

VI. CONCLUSIONS AND FUTURE WORK
The experimental results presented in this paper show that

the Agile Computing middleware enables the realization of
SoA-based applications in the MANET environment,
achieving good performance levels. The Group Manager
service discovery mechanism is more efficient than JXTA.
The service migration capability allows applications to
effectively exploit transient computing resources in a
dynamic, adaptive, and opportunistic fashion.

We are currently performing more extensive experimental
analysis using different and more complex network
topologies. We are also improving the performance of the
state capture and restore operations of the middleware. We
expect to conduct more experiments with the service
migration to measure performance with a variety of services
and with scalability. We will focus particularly on the question
of the service state size. The size of the service state in Figure
5 is relatively small, but this may not be always true in more
complex services. The migration time grows depending on the
number of bytes of the service’s state. For this reason, we are
planning to explore using an analytical model, which
calculates the expected benefit of migrating a service at a
certain point in time. The latter calculation will exploit the
Garbage Collector to determine the size of the service state in
memory.

ACKNOWLEDGEMENTS
This work is supported in part by the U.S. Army Research
Laboratory under Cooperative Agreement W911NF-04-2-
0013, by the U.S. Army Research Laboratory under the
Collaborative Technology Alliance Program, Cooperative
Agreement DAAD19-01-2-0009, and by the Air Force
Research Laboratory under Cooperative Agreement FA8750-
06-2-0064.

REFERENCES
[1] Halonen, T., Ojala, T., Cross-layer Design for Providing

Service Oriented Architecture in a Mobile Ad Hoc
Network. In Proceedings of the 5th International
Conference on Mobile and Ubiquitous Multimedia,
Stanford, CA, USA, 2006.

[2] Juszczyk, L., Lazowski, L., Dustdar, S., Web Service
Discovery, Replication, and Synchronization in Ad-Hoc
Networks. In Proceedings of the 1st International
Conference on Availability, Reliability and Security
(ARES’06), Vienna, Austria, April 2006.

[3] Suri, N., Rebeschini, M., Breedy, M., Carvalho, M., and
Arguedas, M. Resource and Service Discovery in
Wireless Ad-Hoc Networks with Agile Computing. In
Proceedings of the 2006 IEEE Military Communications
Conference (MILCOM 2006), October 2006,
Washington, D.C.

[4] Suri, N., Rebeschini, M., Arguedas, M., Carvalho, M.,
Stabellini, S., and Breedy, M. Towards an Agile
Computing Approach to Dynamic and Adaptive Service-
Oriented Architectures. In Proceedings of the First IEEE

Workshop on Autonomic Communication and Network
Management (ACNM'07).

[5] Sun Microsystems JXTA Web Site: http://www.jxta.org/.
[6] Traversat, Bernard, Ahkil Arora, Mhoamed Abdelaziz,

Mike Duigou, Carl Haywood, Jean-Christophe Hugly,
Eric Pouyoul, Bill Yeager. Project JXTA 2.0 Super-Peer
Virtual Network. Sun Microsystems.

[7] Oliveira, R., Bernardo, L., Ruivo, N., and Pinto, P.
Searching for PI resources on MANETs using JXTA. In
Service Assurance with Partial and Intermittent
Resources (SAPIR’05) at the Advanced Industrial
Conference on Telecommunications.

[8] Tomarchio, O., Bisignano, M., Calvagna, A., and Di
Modica, G. ExPeerience: A JXTA Middleware for
Mobile Ad-Hoc Networks. In Proceedings of the Third
International Conference on Peer-to-Peer Computing
(P2P2003).

[9] Suri, N., Bradshaw, J., Carvalho, M., Cowin, T., Breedy,
M., Groth, P., and Saavedra, R., Agile Computing:
Bridging the Gap between Grid Computing and Ad-hoc
Peer-to-Peer Resource Sharing, in: Proceedings of the
3rd IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGrid 2003).

[10] Tortonesi, M., Stefanelli, C., Suri, N., Arguedas, M., and
Breedy, M. Mockets: A Novel Message-oriented
Communication Middleware for the Wireless Internet, in
Proceedings of International Conference on Wireless
Information Networks and Systems (WINSYS 2006),
Setúbal, Portugal, August 2006.

[11] Carvalho, M., Suri, N., Arguedas, M. (2005) Mobile
Agent-based Communications Middleware for Data
Streaming in the Battlefield. In Proceedings of the 2005
IEEE Military Communications Conference (MILCOM
2005), October 2005, Atlantic City, New Jersey.

[12] Carvalho, M., Suri, N., Arguedas, M., Rebeschini, M.,
and Breedy, M. A Cross-Layer Communications
Framework for Tactical Environments. In Proceedings of
the 2006 IEEE Military Communications Conference
(MILCOM 2006), October 2006, Washington, D.C.

[13] Suri, N., Bradshaw, J.M., Breedy, M.R., Groth, P.T.,
Hill, G.A., and Saavedra, R. State Capture and Resource
Control for Java: The Design and Implementation of the
Aroma Virtual Machine. USENIX JVM 01 Conference
Work in Progress Session.

[14] The Jikes Research Virtual Machine (RVM) project, at
http://jikesrvm.org.

[15] Quitadamo, R., Cabri, G., and Leonardi, L. Enabling
Java Mobile Computing on the IBM Jikes Research
Virtual Machine. In Proceedings of The International
Conference on the Principles and Practice of
Programming in Java 2006 (PPPJ 2006). Mannheim,
Germany.

 [16] Carson, M. and Santay, D. NIST Net – A Linux-based
Network Emulation Tool. In Computer Communication
Review, June 2003.

371

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 14:15 from IEEE Xplore. Restrictions apply.

