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Abstract–Realizing adaptive and efficient peer-to-peer 

Service-oriented Architectures for MANET environments 
is a challenging problem. In particular, robust and 
efficient service discovery and service migration are 
critical in the constantly changing and bandwidth limited 
MANET environments. In these scenarios, service 
migration lays the foundation for self-adaptive 
architectures. This paper describes the agile computing 
approach to peer-to-peer service discovery and service 
migration and provides a performance evaluation of these 
functions in the context of the Agile Computing 
middleware. The experimental results presented in the 
paper show that applications built on top of the Agile 
Computing middleware are capable of opportunistically 
exploiting transient computing resources in the MANET 
environment. 

 
Index Terms–Agile Computing, Peer-to-Peer, Service 

Discovery, Service Migration, Service-oriented 
Architectures, JXTA. 

I. INTRODUCTION 
Service-oriented Architectures (SoAs) are a popular 

approach for designing and building networked and distributed 
systems. SoAs allow the realization of complex distributed 
applications through the composition of services according to 
the definition of a specific business process. This approach 
offers the opportunity for both extensive service reuse and the 
integration of heterogeneous services, with significant savings 
in distributed applications development costs and time. 

Most SoAs were designed to operate on either corporate 
networks or in the Internet environment, with the purpose of 
separating business processes and rules from the 
implementation of basic service functions. Hence, traditional 
SoA implementations are based on centralized service 
directories and make strong assumptions about relatively static 
network topologies, large bandwidth availability, and high 
network stability. 

However, a growing interest in running SoAs in MANET 
environments has recently emerged. In fact, SoAs allow the 
dynamic (re)composition of services at run-time, thus enabling 
the ad-hoc realization of complex distributed applications. In 

addition, SoA-based applications build on top of lean and 
modular services, which are better suited for deployment on 
mobile and resource-constrained nodes than traditional 
heavyweight services. Finally, the modular architecture of 
SoA-based applications allows for the dynamic replacement of 
services, therefore enabling application adaptation to the 
constantly changing network topology of MANETs. 

Unfortunately, the realization of SoAs in MANETs is a 
very challenging task which requires a significant re-
engineering of existing SoA platforms. In particular, the 
MANET environment is not well suited for the deployment of 
traditional centralized service broker(s) and bandwidth 
intensive protocols such as SOAP. One requirement is a 
decentralized and distributed peer-to-peer approach to service 
discovery, which can efficiently find service instances and 
select the best suited ones for exploitation, such as those 
satisfying topological proximity and/or reliability constraints. 
Also, dynamic service migration is an effective approach to 
improving performance and availability of services in the face 
of frequent variations in network topology and resource 
availability. Finally, in MANET environments, bandwidth is 
typically very scarce, thus imposing strict efficiency 
constraints on signaling protocols involved in service 
discovery, migration, and invocation. 

There is a growing effort from both industry and academia 
to develop solutions for SoAs in MANET environments [1] 
[2]. However, it is still unclear whether these proposals enable 
the SoA architectural style to deliver satisfying performance 
levels in MANETs. Moreover, they do not address service 
migration as a means of adaptation. As a result, there is still a 
need to gather some insights on the performance and 
efficiency of state-of-the-art solutions. 

This paper describes and experimentally evaluates two 
aspects of SoAs – service discovery and service migration. 
The Agile Computing middleware is our solution for the 
realization of SoAs specifically designed to operate in 
MANETs. It is based on a peer-to-peer architecture and on an 
adaptive and opportunistic paradigm for resource/service 
discovery and exploitation, which we have called agile 
computing. In particular, the paper focuses on the dynamic 
service discovery and service deployment, activation, and 
migration functions of the Agile Computing middleware, 
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which are respectively provided by the Group Manager [3] 
and AgServe components [4]. 

This paper experimentally compares the performance of 
the Group Manager with Sun Microsystems’ JXTA 
Technology [5] [6]. While JXTA was not designed for 
MANET environments, and other papers describing its 
inadequacies have been published [7], it continues to be a 
popular platform for peer-to-peer systems [8]. Moreover, 
JXTA has been selected to provide the peer-to-peer discovery 
service for the System of Systems Common Operating 
Environment (SOSCOE) for the U.S. Army’s Future Combat 
Systems (FCS) initiative1, which is also one of the target 
environments for the Agile Computing middleware, thereby 
making such a comparison fair. 

This paper also presents some performance results for 
service migration in AgServe, which enables load-balancing, 
fault-tolerance, and the application of autonomic computing 
principles to SoAs. 

II. AGILE COMPUTING 
Agile computing is a novel metaphor for distributed and 

networked systems. It emphasizes designing systems to be 
opportunistic in discovering and exploiting resources in a 
dynamic environment as well as being able to quickly adapt to 
changes in such an environment. The word agile is used to 
highlight both the rapid discovery and exploitation of 
resources and the ability to take advantage of highly transient 
resources. 

The Agile Computing middleware is a specific 
implementation of the agile computing metaphor that proposes 
a peer-to-peer approach for the realization of SoA-based 
distributed applications in the MANET environment. The 
middleware consists of six major components: a) the Agile 
Computing Infrastructure (ACI) Kernel, b) the Group 
Manager, c) the Service Manager, d) Mockets, e) AgServe, 
and f) FlexFeed. Figure 1 shows the overall architecture for 
the middleware. 

The ACI Kernel provides the container functionality for 
hosting and executing services. It also instantiates and 
contains the Group Manager component, which supports 
dynamic resource and service discovery. The Service Manager 
provides service matching functions on top of the Group 
Manager, providing applications with a convenient interface 
based on XML and XPath. Mockets is a communications 
library providing several advanced features that were 
purposely designed for the MANET environment. The 
endpoint migration capability of Mockets is particularly 
relevant to the service migration capability described in this 
paper. AgServe provides support for dynamic deployment, 
activation, and migration of services. Finally, FlexFeed is a 
publish-subscribe system that handles hierarchical data 

                                                        
1 See Sun Microsystems’ Announcement “Global 
Governments and Industry Partners Rely on Sun 
Microsystems to Achieve Security and Scalability” at 
http://www.sun.com/smi/Press/sunflash/2005-
05/sunflash.20050503.5.xml 

dissemination, policy-based transformation of data, and in-
stream data processing. 

 

Figure 1: Agile Computing Middleware Architecture 
 
This paper focuses on the Group Manager and AgServe 

components, which are further described in sections III and 
IV. More information about agile computing, Mockets, and 
FlexFeed is available in [9], [10], and [11] respectively. 

III. GROUP MANAGER 
The Group Manager is an application-level component that 

supports resource and service discovery. It enables the agile 
and opportunistic exploitation of resources by optimizing 
queries to find nodes in network proximity and/or nodes that 
are resource rich or have excess capacity. 

The Group Manager supports proactive advertisement, 
reactive search, or a combination of the two. The search is 
realized using a Gnutella-like or probabilistic search 
mechanism. In addition, the radius (in terms of network hops) 
of the advertisement or search can be controlled on a per 
request basis, providing a powerful mechanism to control how 
strongly or weakly a service may be advertised and how far a 
search request may travel. In the simplest case, distance is 
defined as the number of hops in a MANET environment, but 
can be a more application relevant parameter such as 
bandwidth or latency. 

Propagation of the advertisement and search messages 
occurs via one of three mechanisms – UDP broadcast (the 
simplest case), UDP multicast, or via the XLayer Framework 
that provides bandwidth-efficient flooding [12]. In addition, 
tunneling via TCP supports bridging multiple networks. In all 
of these four cases, each node may selectively rebroadcast an 
incoming message to provide control over the radius. 
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These capabilities enable applications to make tradeoffs 
between discoverability, bandwidth, and latency. Proactive 
advertisement uses more bandwidth but reduces the latency 
when a client needs to find a service and vice-versa. On 
another dimension, a service that is widely present in a 
network does not need to advertise strongly (or, consequently, 
a client looking for such a service does not need to search 
widely) as opposed to services that are scarce. 

Groups may be used to partition network nodes into 
different sets thereby restricting advertisements and queries. 
The Group Manager provides support for two different group 
types: peer groups and managed groups. Peer groups are 
completely decentralized: they do not have an owner or 
manager, but instead maintain node membership 
independently from the perspective of each node. This design 
choice also implies that there is no attempt at maintaining a 
consistent group view for all nodes that are members of a peer 
group. In addition, no special mechanism is required in order 
to join a peer group. Nodes can simply query or register 
resources and services in the context of a specific peer group 
and will implicitly be treated by the Group Manager as 
members of the same peer group. 

The decentralized and dynamic nature of peer groups make 
them very well suited for resource and service sharing in 
MANET environments. However, for additional flexibility, 
the Group Manager also supports centralized resource and 
service management by means of managed groups. A 
managed group is created by a particular node and is owned 
by that node. Other nodes need to explicitly join a managed 
group by sending a membership request to the group owner 
node. 

Access to groups (of both peer and managed types) may 
optionally be restricted using a password, thereby preventing 
nodes that do not possess the necessary authorization 
credentials from joining a specific group. 

The Group Manager API has been designed to be 
extremely simple and generic, facilitating its use in a wide 
range of applications. For example, the ACI Kernel uses the 
Group Manager to propagate node resource information, the 
Service Manager uses it to publish services in XML and 
search for services using XPath queries, and FlexFeed uses the 
Group Manager to find data sources for subscribers. Versions 
of the Group Manager are available for both Java and C++, 
and operating at the application layer facilitates easy, 
piecewise integration into existing applications. All of the 
above features combine together to make the Group Manager 
well suited to MANET environments. More information about 
the Group Manager component is available in [3]. 

IV. AGSERVE 
The AgServe component supports a Service-oriented 

Architecture on top of the Agile Computing Middleware. 
AgServe supports dynamic definition, instantiation, 
invocation, relocation, and termination of services. The 
underlying middleware monitors service resource utilization, 
invocation patterns, and network and node resource 

availability and uses that information to determine optimal 
initial placement and subsequent migration of services. 

AgServe supports dynamic deployment of services by 
exploiting mobile code. Clients may define new services 
dynamically, thereby injecting new capabilities into the 
network. These services are packaged as self-contained 
archives that include all the necessary Java class files and 
other related JAR files. These service archives are 
dynamically distributed (pushed) to other nodes using the ACI 
Kernel functions for remote service installation. Policies may 
be used to control and manage service implementations as 
required for security purposes. 

AgServe also allows activating services on remote nodes. 
Service activation is normally triggered by application-driven 
service invocation requests. AgServe takes advantage of the 
ACI Kernel functions to instantiate the specified service on the 
target node. Once activated, the service is identified by a 
unique identifier that is returned to the client stub, which is 
subsequently used for service invocation. 

In addition, AgServe extends the ACI Kernel service 
container functions to provide transparent service migration. A 
service running inside the service container can be 
asynchronously stopped, its execution state captured, moved 
to a new service container (usually on a different node), and 
then restarted. This migration process is transparent to both 
the service itself and the client utilizing the service. 

AgServe can take advantage of two Java-compatible ACI 
Kernel service containers, respectively based on the Aroma 
VM [13] and the JikesRVM [14], which support transparent 
service migration for services implemented in Java. The 
JikesRVM container uses Mobile JikesRVM [15], an 
enhanced version of the IBM JikesRVM with the ability to 
capture the execution state of Java threads and re-establish it 
transparently on another node. The execution of the service 
will then continue at the very next bytecode instruction on the 
new node. 

The ACI Kernel builds a resource utilization profile for 
each service, keeping track of the CPU utilization and of the 
bytes sent and received over the network for each invocation. 
The ACI Kernel includes a coordination component that uses 
this resource profile information, along with the resource 
availability information from other nodes, to migrate service 
instances between nodes. In particular, it exploits a heuristic 
coordination algorithm to perform service (re)allocation on a 
continuous basis. The checkpointing capabilities of Aroma 
and Mobile JikesRVM, combined with the endpoint migration 
capability of Mockets, allows service instances to be migrated 
in a manner completely transparent to the clients, even in the 
midst of a service invocation. 

Service migration differentiates AgServe from other SoAs. 
Service migration allows AgServe to react to environmental 
changes and is crucial to realize the goal of agility. For 
example, as nodes with free resources become available, 
service instances might be migrated from heavily loaded 
server nodes to other nodes, thereby improving the overall 
performance of the system (self-optimizing behavior). Service 
migration also allows the system to react to accidental events, 
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such as a power loss or an incoming attack (survivability 
behavior). 

AgServe uses the Service Manager functions to support 
dynamic service definition, registration, lookup, and 
invocation. In fact, the dynamic activation and migration of 
service instances raises the need to augment traditional service 
descriptions with meta-information such as location of service 
implementation code, resource utilization profile, and the 
communications profile. Currently, each ACI Kernel 
maintains a database of services and their resource utilization 
information. While this aspect has not yet been realized, the 
resource utilization profile and other meta information could 
be embedded into the WSDL description for the service and 
packaged as part of the service archive. In addition, service 
registration, lookup, and invocation operations have been 
modified in order to support dynamic changes in service 
locations. More information about AgServe can be found in 
[4]. 

V. EXPERIMENTAL RESULTS 
Three experiments were conducted to evaluate the 

performance of the agile computing middleware. The first two 
experiments compare the service discovery capability in the 
Group Manager component with JXTA. The third experiment 
evaluates the service migration capability provided by 
AgServe. 

A. Service Discovery Experiments 
The first experiment used a scenario with three nodes in an 

ad-hoc network to perform the evaluation of service discovery. 
The scenario is based around two UAVs and one ground 
vehicle, as shown in Figure 2. The two UAVs are providing a 
service that the client on the ground wishes to use. The UAVs 
advertise the service periodically and the client looks up the 
service periodically. As the UAVs move, they come into and 
go out of communications range with the ground vehicle. 

The independent variables in this first experiment were the 
connectivity between the three nodes, the time interval 
between service advertisements by UAV1 and UAV2, and the 
time interval between service lookups by the client. The 
dependent variables were the ability for the client to discover 
the service and the bandwidth utilized. Since there was no 
discernible difference between JXTA and the Group Manager 
in terms of the client’s ability to discover the service, only the 
bandwidth utilization results are reported. 

The experiment was set up using three machines running 
NISTNet [16] to simulate the connectivity between the three 
nodes as the UAVs move. The UAVs complete one loop in 60 
seconds. The UAV paths were synchronized in such a way 
that when UAV1 is closest to the ground vehicle, UAV2 is 
farthest from the ground vehicle. Note that in this setup, there 
is no connectivity between UAV1 and UAV2. 

The connectivity between the UAVs and the client has 
been broken into four phases: 

1. 40 seconds: the UAV is unreachable by the client 
(packet drop ratio set to 100%) 

 

 
Figure 2: Scenario for Experiment One 

 
2. 7 seconds: the UAV is approaching the area of 

maximum radio covering (packet drop ratio of 30%) 
3. 6 seconds: the UAV is closest to the client (packet 

drop ratio 10%) 
4. 7 seconds: the UAV is leaving the area of maximum 

radio covering (packet drop ratio of 30%) 
JXTA has been configured in two different modes. In the 

first configuration, each node has been configured as a JXTA 
Rendezvous Peer, and therefore it can share its advertisements 
cache with other Rendezvous Peer nodes and propagate 
queries. In the second configuration, each node has been 
configured as a JXTA Edge Node and relies exclusively on 
multicast queries for service discovery. The Service Manager 
was used over the Group Manager for service matching. Peers 
running JXTA or the Group Manager have been configured 
without service caching. 

The results are shown in Table 1. JXTA-RV is the 
configuration using Rendezvous Peers. JXTA-E is the 
configuration using only Edge Nodes. GM-PI is the default 
group manager configuration, with PING and INFO packets 
enabled. GM is with the PING and INFO packets disabled. 
The PING packet is used to detect node loss / disconnection, 
whereas the INFO packet is used to proactively push data. 
Neither of these capabilities is provided by JXTA, so it would 
be reasonable to disable them in the Group Manager for a fair 
comparison. 

The results show the network traffic in bytes per second 
introduced by service discovery operations in each of the four 
configurations. Each node may generate traffic that is 
multicast to all the other nodes (shown in the multicast 
column) or addressed to a specific target node. The totals 
indicate the overall bandwidth utilization. The results show 
that JXTA uses 2.98 to 18.84 times more bandwidth than the 
Group Manager. In particular, in the best-suited configuration 
modes for this scenario, GM and JXTA-E respectively, JXTA 
uses 6.94 times more bandwidth than the Group Manager. 

The second experiment used a scenario with five nodes 
instead of three – two UAVs and three ground vehicles. Also, 
in this scenario, the UAVs were the clients looking for 
services while the ground vehicles were the servers 

UAV 1 Both UAVs publish Service every 10 seconds
using JXTA or the Group Manager 

UAV 2

GV 
Looks for Service every 10 seconds
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advertising the services. The ground vehicles advertised the 
services at different times, in order to vary the results obtained 
by the UAVs when they queried for a service. In particular, 
GV1 advertised the service every 10 seconds. GV2 advertised 
a service for 10 seconds and stopped for 3 seconds before 
repeating the cycle. GV3 advertised a service for 10 seconds 
and stopped for 5 seconds before repeating the cycle. The 
UAVs queried for the service every 10 seconds. 

 
TABLE 1 

THREE NODE JXTA – GROUP MANAGER COMPARISON 
System/
Sender Multicast GV UAV1 UAV2
JXTA-RV
GV -- -- 731 581
UAV1 -- 1817 -- --
UAV2 -- 1206 -- --
Total 4335
JXTA-E
GV 430 -- 20 12
UAV1 188 370 -- --
UAV2 188 389 -- --
Total 1597
GM-PI
GV 183 -- -- --
UAV1 103 73 -- --
UAV2 103 73 -- --
Total 535
GM
GV 84 -- -- --
UAV1 -- 73 -- --
UAV2 -- 73 -- --
Total 230

Destination

 
Bandwidth Utilization in Bytes per Second 

 
The connectivity between the UAVs and the ground 

vehicles was the same as before – no connection for 40 
seconds, followed by 7 seconds with 30% packet loss, 6 
seconds with 10% packet loss, and another 7 seconds with 
30% packet loss. There was no connectivity between UAV1 
and UAV2 while there was continuous connectivity between 
the three ground vehicles. 

The results are shown in Table 2. The four configurations, 
JXTA-RV, JXTA-E, GM-PI, and GM are the same as before. 
The results show the network traffic in bytes per second, both 
multicast traffic generated from each node as well as point-to-
point traffic between any two nodes. Once again, the Group 
Manager significantly outperforms JXTA, with JXTA using 
2.36 to 49.17 times more bandwidth. Again, using the best 
possible configuration for each component, JXTA uses 9.55 
times more bandwidth. 

While these two experiments provide only two data 
points, it is still worth looking at the trend in terms of 
bandwidth utilization when increasing the size of the network 
from three to five nodes. Figure 3 plots the bandwidth 

utilization for all four configurations. As the figure indicates, 
the bandwidth utilization increases substantially for JXTA in 
Rendezvous mode. Even JXTA in Edge mode shows a larger 
rate of increase than either of the Group Manager 
configurations. With the Group Manager in the optimal 
configuration, there is a very small increase in the bandwidth 
utilization. 

 
TABLE 2 

FIVE NODE JXTA – GROUP MANAGER COMPARISON 
System/
Sender Multicast GV1 GV2 GV3 UAV1 UAV2
JXTA-RV
GV1 28 -- 762 1854 325 118
GV2 10 638 -- 636 214 130
GV3 214 4153 738 -- 303 972
UAV1 206 130 385 299 -- --
UAV2 215 104 77 522 -- --
Total 13031
JXTA-E
GV1 187 -- -- -- 19 25
GV2 188 -- -- -- 205 243
GV3 430 -- -- -- 20 318
UAV1 -- 6 -- -- -- 430
UAV2 -- 17 12 -- -- 430
Total 2531
GM-PI
GV1 103 -- -- -- 73 72
GV2 103 -- -- -- 58 103
GV3 103 -- -- -- 49 49
UAV1 177 -- -- -- -- --
UAV2 181 -- -- -- -- --
Total 1071
GM
GV1 -- -- -- -- 73 73
GV2 -- -- -- -- 58 58
GV3 -- -- -- -- 50 49
UAV1 83 -- -- -- -- --
UAV2 83 -- -- -- -- --
Total 265

Destination

 
Bandwidth Utilization in Bytes per Second 

 
As part of future work, we intend to measure the 

performance with additional nodes to develop a more accurate 
trend for bandwidth utilization as a function of the number of 
nodes. 

B. Service Migration Experiment 
The third experiment shows the benefits of 

opportunistically taking advantage of transient resources and 
measures the overhead of service migration. Figure 4 shows 
the experimental scenario, which consists of a number of 
client nodes, and a smaller number of servers and transient 
nodes (i.e., nodes that become available for short periods of 
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time during which their resources are opportunistically 
exploited). 

Bandwidth Utilization
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Figure 3: Bandwidth Utilization Trend 
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Migration

And
ReturnService 

Completion
And Return

Figure 4: Service Migration Scenario 
 
For this experiment, two client nodes, one server node, 

and one transient node were utilized. The two client nodes 
continuously invoke a CPU intensive factorization service, 
thereby overloading the only available server node. When a 
transient node becomes available, the middleware detects its 
presence and transparently migrates one of the service 
instances to the transient node. When the transient node is 
about to become unavailable (e.g., being shutdown), the 
service is migrated back to the server node. Note that the 
shutdown of the node is recognized by the middleware by 
means of a shutdown handler hook installed in the OS. 

A transient resource may become unavailable in one of 
the following three ways: 

• The node is undergoing a controlled shutdown, 
because some critical condition has been detected. In 
this case, the service migration must be as fast as 
possible to achieve survivability. 

• The node transitions from a previously idle state to a 
busy state, e.g. because the owner of the node is now 
utilizing it. The resource is thus no longer free and 
the service must return back to a server node or move 
to another idle transient node. 

• The quality of the network link (e.g. wireless) used 
by the node is degrading with respect to its past 
experience level, as reported by the XLayer 
framework. The service should then migrate 
immediately to keep on serving the client from 
another “more reachable” node. 

Currently, an abrupt failure of the node or the 
communications link to the node is fatal to the service and the 
middleware does not support recovery from such an 
occurrence. 

Table 3 shows the results of the service migration on the 
performance of the service from the client’s perspective. The 
independent variable in this experiment is the duration of time 
for which the transient node is available. The dependent 
variables are the turnaround times for the service invocation 
from the two clients. 

TABLE 3 
SERVICE MIGRATION PERFORMANCE RESULTS 

Transient Node Service #1 Service #2 Overall
Time (ms)

0 98362 98570 98570
5000 99421 100171 100171

10000 96683 97337 97337
15000 92019 93443 93443
20000 88990 89203 89203
30000 79324 81220 81220
40000 75322 78208 78208
50000 64870 70686 70686
60000 58614 66706 66706
70000 58218 64826 64826

Baseline time for service execution - 54760 ms

(Execution Time in ms)

 
Service Execution Time in case of Service Migration to a 

Transient Node 
 

The time to execute the service, if there is no other load 
on the server node, is 54,760 ms. If two clients simultaneously 
execute the service and there is no transient node to exploit, 
the overall time for both clients to finish is 98,570 ms. When 
the transient node is available for 5 seconds, the overall time 
actually becomes worse (100,171 ms), which is an indication 
of the overhead of service migration. However, as the 
availability of the transient node increases, the overall 
performance improves. The break-even point is around 8 
seconds, which is a measure of the overall agility of the 
system. It is the shortest length of time for which an 
opportunistic node may be exploited without any performance 
degradation. If a transient node is available for a longer length 
of time, the middleware shows a positive performance 
improvement. The ACI kernel decides whether a transient 
node is a suitable candidate for service migration using a 

369

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 14:15 from IEEE Xplore.  Restrictions apply. 



probabilistic model based on the past availability time of 
nodes and on the estimated execution time of the service.  

Tables 4 and 5 and Figure 5 below provide details about 
the overhead costs of service migration. The overhead is 
characterized by the following operations: 

• Time needed to detect a new node on the network 
(Detection time) 

• Time needed by the server node to decide to migrate 
a service (Local Coordinator time) 

• Time needed to capture the execution state of the 
service (RVM Capture time) 

• Time needed to package the state as a DIME2 
message to send to the opportunistic node (DIME 
Packaging time) 

                                                        
2 DIME (Direct Internet Message Encapsulation) is a proposed 
internet standard for the transfer of binary and other 
encapsulated data over SOAP or HTTP. A DIME message is 
composed of one or more DIME records. Each DIME record 
has a small header with meta-information that describes the 
record. 

• Time needed to transfer the DIME message (Transfer 
time) 

• Time needed on the opportunistic node to receive and 
process the request to host the migrated service 
(Local Coordinator time 2) 

• Time needed on the opportunistic node to restore and 
restart the service (RVM Restore time) 

 
As the data indicates, the most variable component of the 
overhead (and the largest in some cases) is node 
detection. The proactive advertisement capability of the 
group manager is used to push information about resource 
availability at the opportunistic nodes. These nodes 
advertise via a periodic PING message generated by the 
Group Manager once every 1000ms. Therefore, the 
discovery time could range upto 1000ms, depending on 
when (within the advertisement cycle) the opportunistic 
node becomes reachable over the network. When an 
overloaded server node receives an advertisement from 
another node indicating resource availability, the server 
node triggers migration of a service, which includes the 
operations listed earlier. 

TABLE 4
OVERHEAD FOR DIFFERENT STAGES OF SERVICE MIGRATION 

Run Detection Local Coord. RVM Capture Packaging Dime Transfer Rem. Coord. RVM Restore Total
1 53 1 192 5 16 2 240 509
2 31 1 213 3 19 2 241 510
3 702 1 264 5 21 2 218 1213
4 466 1 128 6 23 2 237 863

All Times in Milliseconds 
 

TABLE 5 
OVERHEAD FOR DIFFERENT STAGES OF SERVICE MIGRATION AS A PERCENTAGE OF TOTAL TIME 

Run Detection Local Coord. RVM Capture Packaging Dime Transfer Rem. Coord. RVM Restore
1 10.41 0.20 37.72 0.98 3.14 0.39 47.15
2 6.08 0.20 41.76 0.59 3.73 0.39 47.25
3 57.87 0.08 21.76 0.41 1.73 0.16 17.97
4 54.00 0.12 14.83 0.70 2.67 0.23 27.46  
 

Run 1 Run 2 Run 3 Run 4

 
Figure 5: Visual Representation of Overhead for Different Stages of Service Migration 
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VI. CONCLUSIONS AND FUTURE WORK 
The experimental results presented in this paper show that 

the Agile Computing middleware enables the realization of 
SoA-based applications in the MANET environment, 
achieving good performance levels. The Group Manager 
service discovery mechanism is more efficient than JXTA. 
The service migration capability allows applications to 
effectively exploit transient computing resources in a 
dynamic, adaptive, and opportunistic fashion. 

We are currently performing more extensive experimental 
analysis using different and more complex network 
topologies. We are also improving the performance of the 
state capture and restore operations of the middleware. We 
expect to conduct more experiments with the service 
migration to measure performance with a variety of services 
and with scalability. We will focus particularly on the question 
of the service state size. The size of the service state in Figure 
5 is relatively small, but this may not be always true in more 
complex services. The migration time grows depending on the 
number of bytes of the service’s state.  For this reason, we are 
planning to explore using an analytical model, which 
calculates the expected benefit of migrating a service at a 
certain point in time. The latter calculation will exploit the 
Garbage Collector to determine the size of the service state in 
memory.  
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