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Abstract—Due to the underlying dynamic nature of wireless and 
ad-hoc communication environments, applications in tactical 
networks have to cope with network disconnections and 
communication channel degradations. Support for network 
migration, i.e., the ability of a node to seamlessly change its 
network attachment point without disrupting service sessions, is 
therefore essential to provide seamless connectivity to warfighters 
and unmanned autonomous systems. This much needed utility 
calls for novel middleware to provide mobility functions on top of 
the traditional communication infrastructure. The goal of this 
paper is to present the network migration support in Mockets, a 
communication middleware specifically designed to address the 
needs of tactical environments by providing handover capabilities 
transparently and seamlessly to applications. Mockets 
automatically takes advantage of the best available network, 
leveraging on predefined, as well as user-provided, policies to 
perform migration decisions according to the current network 
status. The performance tests we conducted demonstrate the 
effectiveness of our implementation and show that Mockets-based 
network migrations cause an average measured downtime of 17 
milliseconds. From a user's perspective, this short interval makes 
service appear uninterrupted. 

Keywords-component: migration; handover; session mobility; 
Mocket 

I. INTRODUCTION 
As tactical edge networks move toward portable cellular 

infrastructures ranging from fixed installations to base stations 
mounted on HMMVWs, UAVs, and other mobile platforms, 
edge users will be expected to roam across these multiple 
networks in a transparent manner. In addition, when more than 
one network is available with overlapping coverage, users 
expect to be able to take advantage of the best connection 
available with an automatic network migration that seamlessly 
rebinds the connections over time. Typical handover protocols, 
such as MobileIP, create a temporary loss of connectivity 
during a handover. The network infrastructure they require for 
tunneling packets for moving nodes incurs added delay. In 
some situations the connectivity loss and the subsequent 
communication delay are unacceptable. Furthermore, the 
structure of tactical networks may make it impractical to 
deploy systems that require dedicated infrastructure to support 
handover. A relevant example is a tactical telemetry scenario 
where an unmanned vehicle exploring an area streams video 

feedback to a command center for real-time support. In such a 
scenario loss of video data can result in video artifacts and loss 
of interpretability. 

To support the mobility requirements of applications in a 
tactical environment, there is the need for novel middleware to 
provide network migration functions on top of the traditional 
communication infrastructure. We define network migration as 
the ability of a node to change its network attachment point 
transparently while the connection is maintained and services 
continue running with minimal disruption. A session handover 
may be triggered from the physical movement of the 
device/user in space, causing passage through different 
networks, or from a network selection strategy that may detect 
the deterioration of the current network signal or the presence 
of a higher quality signal from a different network. 

This paper presents the network migration support in 
Mockets, a communication middleware specifically designed to 
meet the communication needs of tactical environments, and 
the tactical field advantages provided by this capability. 
Mockets network migration provides the ability for existing 
applications to continue operating without interruption 
irrespective of changes to the attachment point and network 
addressing, thereby significantly increasing the flexibility of 
exploiting the best available communication links at any given 
point in time. Mockets supports flexible communications for 
applications running on tactical edge networks. Features such 
as multiple types of flows (e.g. unreliable/reliable and 
unsequenced/sequenced), prioritization, bandwidth control, 
message replacement, and a number of other attributes 
contribute to significantly improve communications 
performance for tactical applications. 

The main objective of the Mockets network migration 
support is for the handover to be seamless, i.e., transparent to 
the application. No action is required from the application to 
trigger a handover or to take advantage of the best available 
communication link. Seamless also refers to the continuous, 
unbroken service that Mockets aims to provide to the 
application despite network migrations so that the user does not 
perceive performance degradation. 

Mockets automatically selects the best network attachment 
point at any given time leveraging on decision strategies based 
on predefined or user-provided policies, e.g. always select a 



WiFi link over a 3G link, broadband over narrowband, etc. 
Some strategies take advantage of the presence of multiple 
network interfaces to connect to different networks at the same 
time and test various parameters of the network, e.g., 
bandwidth and round trip time. These strategies can take 
advantage of the Mockets monitoring and statistics collection 
features. Other strategies measure low-level metrics such as 
RSSI levels. Our goal is to use best network selection strategies 
to provide the quality of service desired by the application/user 
by performing session handovers when a higher quality 
network is available. 

We evaluated the performance of the Mockets network 
migration through a set of connection delay tests. We measured 
the time to establish a connection with support for migration 
and the time to perform a Mockets reconnection operation. We 
found that while the time for connection establishment suffers 
from the setup of the security architecture for peer 
authentication, the time to perform the Mockets reconnection is 
minimal, an average of 17 ms. In the best case scenario the 
reconnection time is the only downtime for the application. A 
qualitative analysis also highlights that Mockets features a 
reliable service more resilient than TCP to the temporary loss 
of connectivity caused by a session handover. Another benefit 
of the Mockets network migration is scalability due to the 
absence of an external infrastructure typical of other handover 
protocols (e.g. Mobile IP). 

The rest of the paper is as follows. Section II discusses 
handover strategies proposed in the literature. Section III 
presents a tactical scenario that could benefit significantly from 
Mockets session handover. Section IV provides an overview of 
the Mockets framework and its main features and capabilities. 
Section V focuses on the network migration support of 
Mockets, describing the implementation and characteristics of 
the session handover in Mockets. Section VI discusses the best 
network selection strategies we implemented. Section VII 
presents a performance evaluation of our implementation with 
experimental results and a qualitative analysis of the 
advantages provided by Mockets. Section VIII provides 
conclusive remarks and discusses future work. 

II. RELATED WORK 
The standard for WLAN IEEE 802.11 allows handover 

between overlapping WLANs at the link layer but [1] measures 
the handover latency and states that it can be significant and 
subject to large variations. Mobile IP [2] is probably the most 
known migration protocol but it requires an external 
architecture and does not provide fast handovers. Handover 
strategies have also been added to the Session Initiation 
Protocol (SIP) [3] but also in this case the handover has been 
measured to be long and packets would be lost during the 
handover. 

The handover strategies mentioned are inadequate in a 
tactical environment where an external infrastructure to support 
handovers may not be feasible and where a short handover time 
is required because an interruption of service may not be 
acceptable. 

Most handover protocols are developed for mobile 
scenarios while Mockets also perform handovers to offer the 

best quality of service. An approach that realizes session 
handover at the application level to offer quality of service to 
IPTV streams was proposed in [4]. That approach may lead to 
adequate performance but does not target a tactical 
environment because the handover strategy is based on 
congestion levels within the networks and is not a good 
strategy for our scope. 

III. A SEAMLESS HANDOVER SCENARIO 
Considered herein is a scenario in which tactical 

environments are scattered with wireless networks ranging 
from fixed installations to base stations mounted on 
HMMVWs, UAVs, and other mobile platforms. The mobility 
of the radios demands a communication protocol that supports 
network migrations seamlessly. At the same time, a mechanism 
of best network selection and transparent, efficient handover 
could increase the link performance by allowing the device to 
take advantage of the presence of overlapping networks with 
different levels of quality of service, data rates or bandwidth 
constraints. In the following paragraphs we present a tactical 
telemetry scenario where the ability to perform network 
migration is crucial but existing handover protocols would 
cause an intolerable disruption of service.  

The Test and Evaluation and Science and Technology 
(T&E/S&T) Program Office is tasked with developing 
technologies related to the test and evaluation of new military 
capabilities for the DoD [5]. Of particular interest is the testing 
of Unmanned and Autonomous Systems (UAS) in the ground 
environment where wireless communications are dynamic (i.e. 
time-varying) and challenging (i.e. multipath, fading, etc). The 
Unmanned Systems Integrated Roadmap outlines an evolving 
role of unmanned ground systems in support of the warfighter 
to which system testing figures as a key component in 
assessing technology readiness [6]. Before deployment, these 
systems will need to be tested to verify and validate the utility 
and capability of each system as well as the interaction between 
systems. The possible limited communications capability of 
individual systems during UAS testing (UAST) requires that 
emphasis be placed on reliable range telemetry for ground 
based systems at the Major Range and Test Facility Bases 
(MRTFB). Reliable range telemetry hinges on uninterrupted 
network service across multiple available radio access 
networks (RAN). 

Small unmanned ground vehicles (S-UGV) and unattended 
ground sensors (UGS) have limited communication capabilities 
due to the nature of the tactical communications built into 
currently planned systems. These intrinsic communication 
capabilities make it difficult to test and evaluate systems in 
real-time from a common test command center where multiple 
systems’ performance metrics are being observed. By outfitting 
these systems with dedicated range telemetry systems, the UAS 
test articles are able to communicate with a much more capable 
telemetry network system that covers a large geographic test 
area. It is envisioned that test ranges will be outfitted with high-
speed wireless base-stations (e.g. IEEE 802.16/WiMAX) to 
cover wide-open outdoor areas as well as smaller footprint 
wireless base-stations (e.g. IEEE 802.11/Wi-Fi) placed in 
specific areas to cover the interior of buildings and 
tunnels/caves. These edge networks will be supported by high-



capacity, reliable backhaul networks enabling the MRTFBs to 
conduct tests of multiple deployed systems and scenarios in a 
more efficient way and with better test situational awareness. 

In one such scenario, an unmanned ground vehicle/robot is 
released within an urban area to act as an advanced scout. An 
operator located in a HMMVW controls the robot to the 
entrance of a building whereby it is then set into an 
autonomous mode to perform reconnaissance within the 
building. Meanwhile, the UAST command center is 
continuously monitoring the position and status of the robot to 
verify the transition to autonomous mode, assess range safety, 
and to coordinate specific events during the test (e.g. initiate 
test conditions, simulate sensory data, etc.). As the robot enters 
the building, the test area radio access link (i.e. WiMAX) may 
begin to fade and the range telemetry device may have to look 
for another network to connect to. The robot may also have to 
begin relaying video or imagery of its activity and may require 
additional bandwidth not available from the wide area network. 
If the building on the test site is outfitted with a short range 
network (i.e. Wi-Fi) that is capable of handling the UAS 
telemetry data feed then the range telemetry device can switch 
to this new network in order to continue sending its telemetry 
to the test command center. Under existing IP protocols, the 
session migration from the more capable wireless wide area 
network to the wireless local area network would cause an 
interruption in the real-time telemetry feed required to support 
real-time UAST activities. 

IV. THE MOCKETS MIDDLEWARE 
The Mockets Communication Middleware was developed 

to provide advanced communication capabilities and high 
performance in the tactical environment [7]. Mockets runs at 
the application level, sending and receiving messages over 
UDP. Mockets offers several delivery services that applications 
can choose to better serve their needs. The delivery of 
messages can be performed reliably or unreliably and messages 
can be delivered in sequence or not. 

Most of the communication parameters in Mockets are 
customizable upon creation of a Mocket or while the Mocket is 
running. The customization upon creation can help to provide 
the best performance by adapting the framework to the network 
where the application is deployed regardless of different 
environments. Among the customizable parameters there are: 
MTU (Maximum Transmission Unit), pending packet queue 
size, keep-alive timeout, initial assumed RTT (Round-Trip 
Time), window size, SACK (Selective Acknowledgement) 
transmission timeout. Other parameters such as maximum 
lifetime of messages, enqueue timeout and message priority, 
can be set on a per message basis. 

Mockets also offers a statistics collection feature and a 
component to monitor the network state [8]. These allow the 
developer to design applications that take advantage of the 
information collected to adjust the parameters of the connection 
to meet the desired level of quality of service. 

A number of other capabilities of Mockets can be used to 
tune the transmission and obtain high performance in a tactical 
environment. Prioritization and bandwidth control can be 
combined for QoS. By exploiting the message tagging 

capability to mark messages belonging to different types of 
flows, cancellations and replacements can be performed. 
Cancellations could be used to remove messages from less 
important data flows when the communication channel is 
experiencing a temporary lower bandwidth. Replacements 
could be used to send only the most recent update in a specific 
flow by replacing older messages waiting in the queues with 
newer messages. 

Tactical networks are moving toward portable wireless and 
cellular infrastructures with users expecting to be able to roam 
across these multiple networks in a transparent manner. 
Mockets was designed to support mobile service sessions. Two 
aspects of mobility are implemented: session migration to 
different nodes and network migration by dynamically 
changing the network attachment point [9]. Endpoint migration 
to a different node lets the application suspend the Mockets 
connection, retrieve the state of the endpoint, and send it to a 
different node that will use it to resume the connection and 
continue the communication with the peer. This is useful to 
change the device the services are running on without losing 
the open sessions. By providing support for dynamic change of 
the network attachment point, Mockets allows the preservation 
of end-to-end connectivity in spite of node mobility as well as 
the maintenance of the highest quality of service possible by 
using the best performing network available. In this paper we 
focus on this last aspect of the Mockets mobility: seamless 
network migration, its details will be further discussed in the 
next paragraphs. 

V. SESSION HANDOVER IN MOCKETS 
Handover protocols typically aim to maintain connectivity 

while a device moves into and out of wireless networks. While 
this is one of the aspects the Mockets network migration aims 
to cover, it also tries to maximize the performance of the 
communication by taking advantage of the network with the 
best performance available. The information gathered by 
Mockets, through its statistics collection and network 
monitoring, can be fed to handover agents that use network 
selection strategies to decide to request a handover to a new 
network attachment point. When a handover is requested, an IP 
address in the new network needs to be acquired and all the 
services using Mockets need to be re-bound using the Mockets 
reconnect function.  

A. Handover Conditions 
We have identified three situations where session handover 

may occur and Mockets network migration could improve the 
performance of the communication. The three situations are 
depicted in Figure 1. 

In the first scenario, more than one network is available and 
the device is equipped with more than one network interface. In 
this situation, running services can keep using the current 
network while Mockets concurrently connects to another 
network over a second interface and analyzes the performance 
of both networks. In this situation network selection strategies 
can provide the highest quality of service to the application. 

A second situation is when the device has a single network 
interface. Even if more than one network is present only one 



connection at a time is allowed. In this situation, network 
selection strategies may be based on the measurement of the 
RSSI of the networks and lead to a network migration request. 

In the third situation, networks do not overlap in space, a 
single network is available at any given time. A movement may 
produce a connection drop before a new network becomes 
available. This situation does not require particular handoff 
strategies and is the one where the Mockets handoff presents 
the most benefit – no failure from the application perspective, 
while other communication protocols would drop the 
connection. 

  

Figure 1.  Handover scenarios: 1- Multiple overlapping networks and 
multiple network interfaces. 2- Multiple overlapping networks and single 

network interface.  3- Single available network at any given time. 

B. The Reconnect Function 
Once a handover is requested the reconnect function of 

Mockets is called in order to rebind the active connections to 
the new network attachment point. 

The reconnect function sends a reconnect message to the 
peer node and waits for a reconnect ACK. This reconnect 
message contains data to allow the peer to authenticate the 
source of the message and the new IP and port where the 
Mockets communication should be rebound. When the peer 
receives a reconnect message, it tries to authenticate the source 
of the message as the communication peer. If the authentication 
succeeds, it proceeds by changing the peer IP and port at the 
Mockets level and sends an acknowledgement in the form of a 
reconnect ACK message to the new location of the peer. 
Regular communication can resume when the 
acknowledgement reaches the migrating peer waiting for the 
reconnect ACK. 

The wireless networks available in tactical environments 
may be unreliable and suffer some level of packet loss. Our 
approach takes into account packet loss and implements a 
retransmission mechanism to ensure a successful handover. If 
the reconnect ACK does not reach the migrating node before a 
timeout expires, a new reconnect message is sent. Reconnect 
messages will be retransmitted until a reconnect ACK is 

received unless the migrating node waiting for the 
acknowledgement receives a regular communication message 
from the peer, in this case it can safely assume that the 
reconnect ACK was lost but the reconnect message reached the 
peer and the connection has been successfully rebound and 
hence the communication can continue. Furthermore, when a 
node receives a reconnect message from the IP address and 
port it is already connected to, it assumes the reconnect ACK 
was lost and it sends it again without any additional processing. 

C. Security Architecture for Peer Authentication 
Security could represent a critical aspect in network 

migrations. During a communication between node A and node 
B a malicious node could intercept and eliminate the packets 
from A to B and impersonate node A, claiming a session 
handover to a new network attachment point. 

We implemented a security architecture that consists of a 
combination of symmetric and asymmetric key encryption 
algorithms and allows the migrating node to authenticate with 
the peer after a session handover. During connection setup, the 
peers agree on a connection UUID and a secret key (KS in 
Figure 2) using a public key cryptographic algorithm for the 
exchange. When a session handover is performed the 
reconnection message includes the connection UUID, new IP 
address and port, all encrypted with the secret key. When a 
node receives the reconnection message it can decrypt it and 
check if the UUID matches the original one and if IP address 
and port match the source address and port of the UDP 
message. The messages exchanged to set up the security 
architecture and to perform authentication at reconnection are 
shown in Figure 2. 

 

 

Figure 2.  Security architecture implemented to perform authentication 
during session handover. 

Note that the security mechanisms realized in Mockets to 
prevent hijacking of connections is not a replacement for the 
security mechanisms typically employed in tactical radios. We 
assume that applications using Mockets normally execute on 
the "red" side of a tactical radio, with either the radio or a 
HAIPE (High Assurance Internet Protocol Encryptor) node 
handling the necessary encryption. The connection migration 
mechanism is agnostic to the underlying cryptographic security 
of the radio network. 



D. Seamless Network Migration 
The network migration is seamless to the application. A 

node is equipped, at the level of Mockets, with the strategies to 
decide whether to perform a handover and the ability to carry 
out the task without the intervention of the application. The 
application is unaware of the handover process in progress, 
should not perceive a service disruption during the handover, 
and is able to transparently take advantage of the best available 
network at any given time. 

VI. NETWORK SELECTION STRATEGIES 
Mockets implements an adaptive system that selects the 

best network connection among the available ones. The 
framework then dynamically and automatically rebinds the 
endpoints of all the open sessions to the selected network 
attachment point and network interfaces. 

The best network selection system requires explicit support 
from network state monitoring mechanisms that provide 
accurate and timely information to perform effective decision 
making. Mockets continuously monitors the status of all 
network layer addresses and network interfaces on the device. 
Both passive, e.g., used bandwidth and round-trip time, and 
active, e.g., available bandwidth estimation via packet probing, 
measurements at the network level are supported. In addition, 
Mockets tracks several low-level metrics, such as RSSI level of 
wireless network interfaces or GPS location, where available. 

The Mockets best network selection system implements 
both reactive and proactive handover decision algorithms. Each 
handover decision algorithms operates on a set of metrics of 
interest, e.g., available bandwidth and round-trip time. Reactive 
algorithms simply initiate the handover procedure when the 
value of those metrics goes beyond a given threshold. To 
prevent multiple handoffs between networks with similar 
characteristics, Mockets adopts hysteresis-corrected decision 
functions. Proactive strategies leverage predictions of future 
values for the metrics of interest often performed by means of 
Exponentially Weighted Moving Average (EWMA) forecast 
algorithms. 

The handover decision algorithms implemented in Mockets 
are described in terms of KAoS policies [10]. This allows users 
to fine-tune the selection process according to their 
preferences, e.g., to consider economic costs of traffic on the 
different interfaces. 

VII. PERFORMANCE EVALUATION 
A number of performance tests have been conducted to 

demonstrate the efficiency of our implementation. We 
measured the time to establish a new connection when support 
for migration is requested and the time to complete a reconnect 
operation. The results of the experiments show low downtime 
to perform the session migration to a different network . They 
also show that the security infrastructure causes some overhead 
in the initial connection setup. 

The tests have been performed on two laptop machines, the 
first acting as a Mocket server and the second acting as a 
Mocket client, connected through wireless 802.11 interfaces. 

The machines run Ubuntu and feature a 2.00 GHz process with 
3GB of memory and a 2.40 GHz processor with 512 MB of 
memory, respectively. 

Our approach to session migration presents a very low 
reconnection time. We measured 17 ms on average to perform 
a reconnect operation. The total downtime for an application 
performing a handover in Mockets is given by the reconnection 
time, plus the time to acquire a new IP address in the 
destination network, which we define as IP address acquisition 
time. Depending on the migration scenario, the time for the IP 
address acquisition could represent zero or up to few seconds 
of downtime for the application. 

The first scenario is illustrated in Figure 1 when more than 
one network interface is present and more than one network is 
available. While one interface is used for the active connections 
a second interface could be used to scan the available networks 
to identify one that provides better performance than the one 
currently in use, acquire an IP address in the selected new 
network and trigger a handover. This is our best case scenario 
where the only downtime for the application is the few 
milliseconds of the reconnection time. In the second and third 
scenarios pictured in Figure 1, the IP address acquisition time 
needs to be taken into account as part of the downtime of the 
application. The authors in [11] measure the time to perform a 
handover at the link layer level, where a node registers with a 
different base station from the one it was connected to less than 
10 ms. The additional time needed to be assigned an IP address 
is strictly dependent on the specific network we are connecting 
to. 

The tests we performed also show that establishing a new 
Mockets connection without support for session migration 
takes 12 ms on average. When support for session migration is 
requested the average measured time to connect was 114 ms. 
The connection establishment takes into account the 
cryptographic operations as well as the data exchange between 
the client and the server. The largest component of the 
connection establishment time is the time taken to generate a 
new public/private key pair, which is CPU intensive and highly 
dependent on the system performance and the system load. 
Figure 3 shows the results of several runs measuring the time to 
perform the connection establishment with support for network 
migration and the time to reconnect. The time to establish a 
new connection shows some variations in different runs. This is 
due to the creation of the key pair, which is not a constant-time 
operation. 

When the session migration is performed in networks with 
a certain level of packet loss, the performance of the handover 
may degrade. If the reconnect packet or the reconnect ACK 
packet are lost, they need to be retransmitted requiring more 
time to successfully reconnect to the peer and hence a longer 
downtime will affect the application. However network 
selection strategies aim to choose the link with higher quality. 
Therefore, in the presence of multiple networks, handover 
strategies take carefully into account packet loss rates among 
other parameters since losses may adversely affect the 
migration. 



 

 

Figure 3.  Several runs that show the time to perform the establishment of a 
new connection with support for network migration and the time for a 

reconnect operation. 

The Mockets network migration approach not only allows a 
fast handover, it can also take advantage of the peculiar design 
of Mockets to overcome the short period of lack of connectivity 
without additional overhead. The authors in [12] present 
several tests that measure the disruption an application using 
TCP runs into when performing a session handover over 
Mobile IP. The handover causes a service disruption longer 
than 10 seconds to the application. This downtime is due in part 
to the actual time required to perform a session migration using 
Mobile IP that was measured to be between 2.77 and 5.91 
seconds, depending on the movement detection mechanism 
used. But it is also due to the disruption that a period of missing 
connectivity creates on TCP. TCP reacts to the expiring 
timeouts of packets during handovers with exponential backoff. 
Once the handover is complete and the connection is restored, 
packets start to be acknowledged again while the slow-start 
algorithm implemented in TCP (as a congestion avoidance 
mechanism) gradually increases the sending rate. TCP 
responds to the period of missing connectivity with drastic 
measures. Mockets on the other hand makes available the same 
reliable service TCP provides but is resilient to the loss of 
packets since it is designed for tactical environments and 
wireless networks where the loss of a packet or a delay does 
not necessarily imply network congestion. 

An additional benefit of the Mockets approach to network 
migration is scalability. Using Mockets we can perform 
network migrations without an external architecture or the 
support of other entities in the network, such as a Home Agent 
and Foreign Agent in the case of Mobile IP. Regardless of the 
number of nodes performing migrations and the number of 
migrations performed by each node, the only overhead added 
to the network is represented by the reconnect and reconnect 
ACK messages exchanged to perform the handover. 

VIII. CONCLUSIONS AND FUTURE WORK 
Mockets provides tactical network applications with a 

session migration function that enables seamless handovers 
between different network attachment points. The Mockets 
network selection function allows exploiting the best available 
link according to network conditions and user preferences. Our 
experimental results show that the time required to migrate a 
session endpoint in Mockets is usually less then 20 

milliseconds. The middleware performance is therefore 
adequate for most applications.  

We are currently evaluating other strategies to perform 
network selection and are studying how different strategies 
perform in different network scenarios. The scenario that a 
strategy is tested on may bias the good performance obtained 
from one strategy. Using Mockets statistics collection and 
monitoring features, we could deduce the particular scenario 
the communication is in and apply the best strategy for that 
particular situation. 

Extending the idea of the session handover that takes 
advantage of a device with multiple network interfaces, we are 
implementing a trunking mechanism that would allow a 
Mockets connection to exploit two networks at the same time 
instead of just migrating to a higher quality network. By 
trunking the multiple available networks, a Mockets endpoint 
could send and receive messages on multiple links in order to 
improve overall bandwidth, or use different networks for traffic 
with different priorities. 
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