
Seamless Network Migration Using the Mockets
Communications Middleware

Erika Benvegnù, Niranjan Suri
Florida Institute for Human &

Machine Cognition
Pensacola, FL

{ebenvegnu, nsuri}@ihmc.us

Mauro Tortonesi
Engineering Department

University of Ferrara
Ferrara, Italy

mtortonesi@ing.unife.it

Tomás Esterrich III
Tactical ISR Division

The Charles Stark Draper Laboratory
Cambridge, MA

testerrich@draper.com

Abstract—Due to the underlying dynamic nature of wireless and
ad-hoc communication environments, applications in tactical
networks have to cope with network disconnections and
communication channel degradations. Support for network
migration, i.e., the ability of a node to seamlessly change its
network attachment point without disrupting service sessions, is
therefore essential to provide seamless connectivity to warfighters
and unmanned autonomous systems. This much needed utility
calls for novel middleware to provide mobility functions on top of
the traditional communication infrastructure. The goal of this
paper is to present the network migration support in Mockets, a
communication middleware specifically designed to address the
needs of tactical environments by providing handover capabilities
transparently and seamlessly to applications. Mockets
automatically takes advantage of the best available network,
leveraging on predefined, as well as user-provided, policies to
perform migration decisions according to the current network
status. The performance tests we conducted demonstrate the
effectiveness of our implementation and show that Mockets-based
network migrations cause an average measured downtime of 17
milliseconds. From a user's perspective, this short interval makes
service appear uninterrupted.

Keywords-component: migration; handover; session mobility;
Mocket

I. INTRODUCTION
As tactical edge networks move toward portable cellular

infrastructures ranging from fixed installations to base stations
mounted on HMMVWs, UAVs, and other mobile platforms,
edge users will be expected to roam across these multiple
networks in a transparent manner. In addition, when more than
one network is available with overlapping coverage, users
expect to be able to take advantage of the best connection
available with an automatic network migration that seamlessly
rebinds the connections over time. Typical handover protocols,
such as MobileIP, create a temporary loss of connectivity
during a handover. The network infrastructure they require for
tunneling packets for moving nodes incurs added delay. In
some situations the connectivity loss and the subsequent
communication delay are unacceptable. Furthermore, the
structure of tactical networks may make it impractical to
deploy systems that require dedicated infrastructure to support
handover. A relevant example is a tactical telemetry scenario
where an unmanned vehicle exploring an area streams video

feedback to a command center for real-time support. In such a
scenario loss of video data can result in video artifacts and loss
of interpretability.

To support the mobility requirements of applications in a
tactical environment, there is the need for novel middleware to
provide network migration functions on top of the traditional
communication infrastructure. We define network migration as
the ability of a node to change its network attachment point
transparently while the connection is maintained and services
continue running with minimal disruption. A session handover
may be triggered from the physical movement of the
device/user in space, causing passage through different
networks, or from a network selection strategy that may detect
the deterioration of the current network signal or the presence
of a higher quality signal from a different network.

This paper presents the network migration support in
Mockets, a communication middleware specifically designed to
meet the communication needs of tactical environments, and
the tactical field advantages provided by this capability.
Mockets network migration provides the ability for existing
applications to continue operating without interruption
irrespective of changes to the attachment point and network
addressing, thereby significantly increasing the flexibility of
exploiting the best available communication links at any given
point in time. Mockets supports flexible communications for
applications running on tactical edge networks. Features such
as multiple types of flows (e.g. unreliable/reliable and
unsequenced/sequenced), prioritization, bandwidth control,
message replacement, and a number of other attributes
contribute to significantly improve communications
performance for tactical applications.

The main objective of the Mockets network migration
support is for the handover to be seamless, i.e., transparent to
the application. No action is required from the application to
trigger a handover or to take advantage of the best available
communication link. Seamless also refers to the continuous,
unbroken service that Mockets aims to provide to the
application despite network migrations so that the user does not
perceive performance degradation.

Mockets automatically selects the best network attachment
point at any given time leveraging on decision strategies based
on predefined or user-provided policies, e.g. always select a

WiFi link over a 3G link, broadband over narrowband, etc.
Some strategies take advantage of the presence of multiple
network interfaces to connect to different networks at the same
time and test various parameters of the network, e.g.,
bandwidth and round trip time. These strategies can take
advantage of the Mockets monitoring and statistics collection
features. Other strategies measure low-level metrics such as
RSSI levels. Our goal is to use best network selection strategies
to provide the quality of service desired by the application/user
by performing session handovers when a higher quality
network is available.

We evaluated the performance of the Mockets network
migration through a set of connection delay tests. We measured
the time to establish a connection with support for migration
and the time to perform a Mockets reconnection operation. We
found that while the time for connection establishment suffers
from the setup of the security architecture for peer
authentication, the time to perform the Mockets reconnection is
minimal, an average of 17 ms. In the best case scenario the
reconnection time is the only downtime for the application. A
qualitative analysis also highlights that Mockets features a
reliable service more resilient than TCP to the temporary loss
of connectivity caused by a session handover. Another benefit
of the Mockets network migration is scalability due to the
absence of an external infrastructure typical of other handover
protocols (e.g. Mobile IP).

The rest of the paper is as follows. Section II discusses
handover strategies proposed in the literature. Section III
presents a tactical scenario that could benefit significantly from
Mockets session handover. Section IV provides an overview of
the Mockets framework and its main features and capabilities.
Section V focuses on the network migration support of
Mockets, describing the implementation and characteristics of
the session handover in Mockets. Section VI discusses the best
network selection strategies we implemented. Section VII
presents a performance evaluation of our implementation with
experimental results and a qualitative analysis of the
advantages provided by Mockets. Section VIII provides
conclusive remarks and discusses future work.

II. RELATED WORK
The standard for WLAN IEEE 802.11 allows handover

between overlapping WLANs at the link layer but [1] measures
the handover latency and states that it can be significant and
subject to large variations. Mobile IP [2] is probably the most
known migration protocol but it requires an external
architecture and does not provide fast handovers. Handover
strategies have also been added to the Session Initiation
Protocol (SIP) [3] but also in this case the handover has been
measured to be long and packets would be lost during the
handover.

The handover strategies mentioned are inadequate in a
tactical environment where an external infrastructure to support
handovers may not be feasible and where a short handover time
is required because an interruption of service may not be
acceptable.

Most handover protocols are developed for mobile
scenarios while Mockets also perform handovers to offer the

best quality of service. An approach that realizes session
handover at the application level to offer quality of service to
IPTV streams was proposed in [4]. That approach may lead to
adequate performance but does not target a tactical
environment because the handover strategy is based on
congestion levels within the networks and is not a good
strategy for our scope.

III. A SEAMLESS HANDOVER SCENARIO
Considered herein is a scenario in which tactical

environments are scattered with wireless networks ranging
from fixed installations to base stations mounted on
HMMVWs, UAVs, and other mobile platforms. The mobility
of the radios demands a communication protocol that supports
network migrations seamlessly. At the same time, a mechanism
of best network selection and transparent, efficient handover
could increase the link performance by allowing the device to
take advantage of the presence of overlapping networks with
different levels of quality of service, data rates or bandwidth
constraints. In the following paragraphs we present a tactical
telemetry scenario where the ability to perform network
migration is crucial but existing handover protocols would
cause an intolerable disruption of service.

The Test and Evaluation and Science and Technology
(T&E/S&T) Program Office is tasked with developing
technologies related to the test and evaluation of new military
capabilities for the DoD [5]. Of particular interest is the testing
of Unmanned and Autonomous Systems (UAS) in the ground
environment where wireless communications are dynamic (i.e.
time-varying) and challenging (i.e. multipath, fading, etc). The
Unmanned Systems Integrated Roadmap outlines an evolving
role of unmanned ground systems in support of the warfighter
to which system testing figures as a key component in
assessing technology readiness [6]. Before deployment, these
systems will need to be tested to verify and validate the utility
and capability of each system as well as the interaction between
systems. The possible limited communications capability of
individual systems during UAS testing (UAST) requires that
emphasis be placed on reliable range telemetry for ground
based systems at the Major Range and Test Facility Bases
(MRTFB). Reliable range telemetry hinges on uninterrupted
network service across multiple available radio access
networks (RAN).

Small unmanned ground vehicles (S-UGV) and unattended
ground sensors (UGS) have limited communication capabilities
due to the nature of the tactical communications built into
currently planned systems. These intrinsic communication
capabilities make it difficult to test and evaluate systems in
real-time from a common test command center where multiple
systems’ performance metrics are being observed. By outfitting
these systems with dedicated range telemetry systems, the UAS
test articles are able to communicate with a much more capable
telemetry network system that covers a large geographic test
area. It is envisioned that test ranges will be outfitted with high-
speed wireless base-stations (e.g. IEEE 802.16/WiMAX) to
cover wide-open outdoor areas as well as smaller footprint
wireless base-stations (e.g. IEEE 802.11/Wi-Fi) placed in
specific areas to cover the interior of buildings and
tunnels/caves. These edge networks will be supported by high-

capacity, reliable backhaul networks enabling the MRTFBs to
conduct tests of multiple deployed systems and scenarios in a
more efficient way and with better test situational awareness.

In one such scenario, an unmanned ground vehicle/robot is
released within an urban area to act as an advanced scout. An
operator located in a HMMVW controls the robot to the
entrance of a building whereby it is then set into an
autonomous mode to perform reconnaissance within the
building. Meanwhile, the UAST command center is
continuously monitoring the position and status of the robot to
verify the transition to autonomous mode, assess range safety,
and to coordinate specific events during the test (e.g. initiate
test conditions, simulate sensory data, etc.). As the robot enters
the building, the test area radio access link (i.e. WiMAX) may
begin to fade and the range telemetry device may have to look
for another network to connect to. The robot may also have to
begin relaying video or imagery of its activity and may require
additional bandwidth not available from the wide area network.
If the building on the test site is outfitted with a short range
network (i.e. Wi-Fi) that is capable of handling the UAS
telemetry data feed then the range telemetry device can switch
to this new network in order to continue sending its telemetry
to the test command center. Under existing IP protocols, the
session migration from the more capable wireless wide area
network to the wireless local area network would cause an
interruption in the real-time telemetry feed required to support
real-time UAST activities.

IV. THE MOCKETS MIDDLEWARE
The Mockets Communication Middleware was developed

to provide advanced communication capabilities and high
performance in the tactical environment [7]. Mockets runs at
the application level, sending and receiving messages over
UDP. Mockets offers several delivery services that applications
can choose to better serve their needs. The delivery of
messages can be performed reliably or unreliably and messages
can be delivered in sequence or not.

Most of the communication parameters in Mockets are
customizable upon creation of a Mocket or while the Mocket is
running. The customization upon creation can help to provide
the best performance by adapting the framework to the network
where the application is deployed regardless of different
environments. Among the customizable parameters there are:
MTU (Maximum Transmission Unit), pending packet queue
size, keep-alive timeout, initial assumed RTT (Round-Trip
Time), window size, SACK (Selective Acknowledgement)
transmission timeout. Other parameters such as maximum
lifetime of messages, enqueue timeout and message priority,
can be set on a per message basis.

Mockets also offers a statistics collection feature and a
component to monitor the network state [8]. These allow the
developer to design applications that take advantage of the
information collected to adjust the parameters of the connection
to meet the desired level of quality of service.

A number of other capabilities of Mockets can be used to
tune the transmission and obtain high performance in a tactical
environment. Prioritization and bandwidth control can be
combined for QoS. By exploiting the message tagging

capability to mark messages belonging to different types of
flows, cancellations and replacements can be performed.
Cancellations could be used to remove messages from less
important data flows when the communication channel is
experiencing a temporary lower bandwidth. Replacements
could be used to send only the most recent update in a specific
flow by replacing older messages waiting in the queues with
newer messages.

Tactical networks are moving toward portable wireless and
cellular infrastructures with users expecting to be able to roam
across these multiple networks in a transparent manner.
Mockets was designed to support mobile service sessions. Two
aspects of mobility are implemented: session migration to
different nodes and network migration by dynamically
changing the network attachment point [9]. Endpoint migration
to a different node lets the application suspend the Mockets
connection, retrieve the state of the endpoint, and send it to a
different node that will use it to resume the connection and
continue the communication with the peer. This is useful to
change the device the services are running on without losing
the open sessions. By providing support for dynamic change of
the network attachment point, Mockets allows the preservation
of end-to-end connectivity in spite of node mobility as well as
the maintenance of the highest quality of service possible by
using the best performing network available. In this paper we
focus on this last aspect of the Mockets mobility: seamless
network migration, its details will be further discussed in the
next paragraphs.

V. SESSION HANDOVER IN MOCKETS
Handover protocols typically aim to maintain connectivity

while a device moves into and out of wireless networks. While
this is one of the aspects the Mockets network migration aims
to cover, it also tries to maximize the performance of the
communication by taking advantage of the network with the
best performance available. The information gathered by
Mockets, through its statistics collection and network
monitoring, can be fed to handover agents that use network
selection strategies to decide to request a handover to a new
network attachment point. When a handover is requested, an IP
address in the new network needs to be acquired and all the
services using Mockets need to be re-bound using the Mockets
reconnect function.

A. Handover Conditions
We have identified three situations where session handover

may occur and Mockets network migration could improve the
performance of the communication. The three situations are
depicted in Figure 1.

In the first scenario, more than one network is available and
the device is equipped with more than one network interface. In
this situation, running services can keep using the current
network while Mockets concurrently connects to another
network over a second interface and analyzes the performance
of both networks. In this situation network selection strategies
can provide the highest quality of service to the application.

A second situation is when the device has a single network
interface. Even if more than one network is present only one

connection at a time is allowed. In this situation, network
selection strategies may be based on the measurement of the
RSSI of the networks and lead to a network migration request.

In the third situation, networks do not overlap in space, a
single network is available at any given time. A movement may
produce a connection drop before a new network becomes
available. This situation does not require particular handoff
strategies and is the one where the Mockets handoff presents
the most benefit – no failure from the application perspective,
while other communication protocols would drop the
connection.

Figure 1. Handover scenarios: 1- Multiple overlapping networks and
multiple network interfaces. 2- Multiple overlapping networks and single

network interface. 3- Single available network at any given time.

B. The Reconnect Function
Once a handover is requested the reconnect function of

Mockets is called in order to rebind the active connections to
the new network attachment point.

The reconnect function sends a reconnect message to the
peer node and waits for a reconnect ACK. This reconnect
message contains data to allow the peer to authenticate the
source of the message and the new IP and port where the
Mockets communication should be rebound. When the peer
receives a reconnect message, it tries to authenticate the source
of the message as the communication peer. If the authentication
succeeds, it proceeds by changing the peer IP and port at the
Mockets level and sends an acknowledgement in the form of a
reconnect ACK message to the new location of the peer.
Regular communication can resume when the
acknowledgement reaches the migrating peer waiting for the
reconnect ACK.

The wireless networks available in tactical environments
may be unreliable and suffer some level of packet loss. Our
approach takes into account packet loss and implements a
retransmission mechanism to ensure a successful handover. If
the reconnect ACK does not reach the migrating node before a
timeout expires, a new reconnect message is sent. Reconnect
messages will be retransmitted until a reconnect ACK is

received unless the migrating node waiting for the
acknowledgement receives a regular communication message
from the peer, in this case it can safely assume that the
reconnect ACK was lost but the reconnect message reached the
peer and the connection has been successfully rebound and
hence the communication can continue. Furthermore, when a
node receives a reconnect message from the IP address and
port it is already connected to, it assumes the reconnect ACK
was lost and it sends it again without any additional processing.

C. Security Architecture for Peer Authentication
Security could represent a critical aspect in network

migrations. During a communication between node A and node
B a malicious node could intercept and eliminate the packets
from A to B and impersonate node A, claiming a session
handover to a new network attachment point.

We implemented a security architecture that consists of a
combination of symmetric and asymmetric key encryption
algorithms and allows the migrating node to authenticate with
the peer after a session handover. During connection setup, the
peers agree on a connection UUID and a secret key (KS in
Figure 2) using a public key cryptographic algorithm for the
exchange. When a session handover is performed the
reconnection message includes the connection UUID, new IP
address and port, all encrypted with the secret key. When a
node receives the reconnection message it can decrypt it and
check if the UUID matches the original one and if IP address
and port match the source address and port of the UDP
message. The messages exchanged to set up the security
architecture and to perform authentication at reconnection are
shown in Figure 2.

Figure 2. Security architecture implemented to perform authentication
during session handover.

Note that the security mechanisms realized in Mockets to
prevent hijacking of connections is not a replacement for the
security mechanisms typically employed in tactical radios. We
assume that applications using Mockets normally execute on
the "red" side of a tactical radio, with either the radio or a
HAIPE (High Assurance Internet Protocol Encryptor) node
handling the necessary encryption. The connection migration
mechanism is agnostic to the underlying cryptographic security
of the radio network.

D. Seamless Network Migration
The network migration is seamless to the application. A

node is equipped, at the level of Mockets, with the strategies to
decide whether to perform a handover and the ability to carry
out the task without the intervention of the application. The
application is unaware of the handover process in progress,
should not perceive a service disruption during the handover,
and is able to transparently take advantage of the best available
network at any given time.

VI. NETWORK SELECTION STRATEGIES
Mockets implements an adaptive system that selects the

best network connection among the available ones. The
framework then dynamically and automatically rebinds the
endpoints of all the open sessions to the selected network
attachment point and network interfaces.

The best network selection system requires explicit support
from network state monitoring mechanisms that provide
accurate and timely information to perform effective decision
making. Mockets continuously monitors the status of all
network layer addresses and network interfaces on the device.
Both passive, e.g., used bandwidth and round-trip time, and
active, e.g., available bandwidth estimation via packet probing,
measurements at the network level are supported. In addition,
Mockets tracks several low-level metrics, such as RSSI level of
wireless network interfaces or GPS location, where available.

The Mockets best network selection system implements
both reactive and proactive handover decision algorithms. Each
handover decision algorithms operates on a set of metrics of
interest, e.g., available bandwidth and round-trip time. Reactive
algorithms simply initiate the handover procedure when the
value of those metrics goes beyond a given threshold. To
prevent multiple handoffs between networks with similar
characteristics, Mockets adopts hysteresis-corrected decision
functions. Proactive strategies leverage predictions of future
values for the metrics of interest often performed by means of
Exponentially Weighted Moving Average (EWMA) forecast
algorithms.

The handover decision algorithms implemented in Mockets
are described in terms of KAoS policies [10]. This allows users
to fine-tune the selection process according to their
preferences, e.g., to consider economic costs of traffic on the
different interfaces.

VII. PERFORMANCE EVALUATION
A number of performance tests have been conducted to

demonstrate the efficiency of our implementation. We
measured the time to establish a new connection when support
for migration is requested and the time to complete a reconnect
operation. The results of the experiments show low downtime
to perform the session migration to a different network . They
also show that the security infrastructure causes some overhead
in the initial connection setup.

The tests have been performed on two laptop machines, the
first acting as a Mocket server and the second acting as a
Mocket client, connected through wireless 802.11 interfaces.

The machines run Ubuntu and feature a 2.00 GHz process with
3GB of memory and a 2.40 GHz processor with 512 MB of
memory, respectively.

Our approach to session migration presents a very low
reconnection time. We measured 17 ms on average to perform
a reconnect operation. The total downtime for an application
performing a handover in Mockets is given by the reconnection
time, plus the time to acquire a new IP address in the
destination network, which we define as IP address acquisition
time. Depending on the migration scenario, the time for the IP
address acquisition could represent zero or up to few seconds
of downtime for the application.

The first scenario is illustrated in Figure 1 when more than
one network interface is present and more than one network is
available. While one interface is used for the active connections
a second interface could be used to scan the available networks
to identify one that provides better performance than the one
currently in use, acquire an IP address in the selected new
network and trigger a handover. This is our best case scenario
where the only downtime for the application is the few
milliseconds of the reconnection time. In the second and third
scenarios pictured in Figure 1, the IP address acquisition time
needs to be taken into account as part of the downtime of the
application. The authors in [11] measure the time to perform a
handover at the link layer level, where a node registers with a
different base station from the one it was connected to less than
10 ms. The additional time needed to be assigned an IP address
is strictly dependent on the specific network we are connecting
to.

The tests we performed also show that establishing a new
Mockets connection without support for session migration
takes 12 ms on average. When support for session migration is
requested the average measured time to connect was 114 ms.
The connection establishment takes into account the
cryptographic operations as well as the data exchange between
the client and the server. The largest component of the
connection establishment time is the time taken to generate a
new public/private key pair, which is CPU intensive and highly
dependent on the system performance and the system load.
Figure 3 shows the results of several runs measuring the time to
perform the connection establishment with support for network
migration and the time to reconnect. The time to establish a
new connection shows some variations in different runs. This is
due to the creation of the key pair, which is not a constant-time
operation.

When the session migration is performed in networks with
a certain level of packet loss, the performance of the handover
may degrade. If the reconnect packet or the reconnect ACK
packet are lost, they need to be retransmitted requiring more
time to successfully reconnect to the peer and hence a longer
downtime will affect the application. However network
selection strategies aim to choose the link with higher quality.
Therefore, in the presence of multiple networks, handover
strategies take carefully into account packet loss rates among
other parameters since losses may adversely affect the
migration.

Figure 3. Several runs that show the time to perform the establishment of a
new connection with support for network migration and the time for a

reconnect operation.

The Mockets network migration approach not only allows a
fast handover, it can also take advantage of the peculiar design
of Mockets to overcome the short period of lack of connectivity
without additional overhead. The authors in [12] present
several tests that measure the disruption an application using
TCP runs into when performing a session handover over
Mobile IP. The handover causes a service disruption longer
than 10 seconds to the application. This downtime is due in part
to the actual time required to perform a session migration using
Mobile IP that was measured to be between 2.77 and 5.91
seconds, depending on the movement detection mechanism
used. But it is also due to the disruption that a period of missing
connectivity creates on TCP. TCP reacts to the expiring
timeouts of packets during handovers with exponential backoff.
Once the handover is complete and the connection is restored,
packets start to be acknowledged again while the slow-start
algorithm implemented in TCP (as a congestion avoidance
mechanism) gradually increases the sending rate. TCP
responds to the period of missing connectivity with drastic
measures. Mockets on the other hand makes available the same
reliable service TCP provides but is resilient to the loss of
packets since it is designed for tactical environments and
wireless networks where the loss of a packet or a delay does
not necessarily imply network congestion.

An additional benefit of the Mockets approach to network
migration is scalability. Using Mockets we can perform
network migrations without an external architecture or the
support of other entities in the network, such as a Home Agent
and Foreign Agent in the case of Mobile IP. Regardless of the
number of nodes performing migrations and the number of
migrations performed by each node, the only overhead added
to the network is represented by the reconnect and reconnect
ACK messages exchanged to perform the handover.

VIII. CONCLUSIONS AND FUTURE WORK
Mockets provides tactical network applications with a

session migration function that enables seamless handovers
between different network attachment points. The Mockets
network selection function allows exploiting the best available
link according to network conditions and user preferences. Our
experimental results show that the time required to migrate a
session endpoint in Mockets is usually less then 20

milliseconds. The middleware performance is therefore
adequate for most applications.

We are currently evaluating other strategies to perform
network selection and are studying how different strategies
perform in different network scenarios. The scenario that a
strategy is tested on may bias the good performance obtained
from one strategy. Using Mockets statistics collection and
monitoring features, we could deduce the particular scenario
the communication is in and apply the best strategy for that
particular situation.

Extending the idea of the session handover that takes
advantage of a device with multiple network interfaces, we are
implementing a trunking mechanism that would allow a
Mockets connection to exploit two networks at the same time
instead of just migrating to a higher quality network. By
trunking the multiple available networks, a Mockets endpoint
could send and receive messages on multiple links in order to
improve overall bandwidth, or use different networks for traffic
with different priorities.

ACKNOWLEDGMENT
This work is supported in part by the U.S. Army Research

Laboratory under Cooperative Agreement W911NF-04-2-0013
and by the Air Force Research Laboratory under Cooperative
Agreement FA8750-06-2-0064.

REFERENCES
[1] A. Mishra, M. Shin, and W. Arbaugh, “An empirical analysis of the

IEEE 802.11 MAC layer handoff process”, ACM SIGCOMM 2003.
[2] A. Stephane and A. H. Aghvami, “Fast handover schemes for future

wireless IP networks: a proposal and analysis”, IEEE Vehicular
Technology Conference 2001.

[3] E. Wedlund and H. Schulzrinne, “Mobility support using SIP”, ACM
WoWMoM 1999.

[4] G. Cunningham, P. Perry, J. Murphy, L. Murphy, “Seamless handover of
IPTV streams in a wireless LAN network”, IEEE Transactions on
Broadcasting Volume 55 Issue 4 Dec 2009.

[5] Test & Evaluation/Science & Technology Program Office. [Online].
http://www.acq.osd.mil/trmc/jipp/te-st/

[6] Office of the Secretary of Defense. Unmanned Systems Integrated
Roadmap FY2009-2034 [Online].
http://www.acq.osd.mil/uas/docs/UMSIntegratedRoadmap2009.pdf

[7] M. Tortonesi, C. Stefanelli, N. Suri, M. Arguedas, M. Breedy, “Mockets:
a novel message-oriented communication middleware for wireless
internet”, WINSYS 2006.

[8] C. Stefanelli, M. Tortonesi, M. Carvalho, N. Suri, “Network conditions
monitoring in the Mockets communications framework”, MILCOM
2007.

[9] C. Stefanelli, M. Tortonesi, E. Benvegnú, N. Suri, “Session mobility in
the Mockets communication middleware”, ISCC 2008.

[10] N. Suri, M. Carvalho, J. Lott, M. Tortonesi, J. Bradshaw, M. Arguedas,
M. Breedy, "Policy-based bandwidth management for tactical networks
with the Agile Computing Middleware”, MILCOM 2006.

[11] R. Càceres, V. N. Padmanabhan, “Fast and scalable wireless handoffs in
support of mobile internet audio”. Mobile Networks and Applications.
Vol 3, Issue 4 (1998).

[12] N. A. Fikouras, K. El Malki, S. R. Cvetkovic, C. Smythe, “Performance
of TCP and UDP during Mobile IP handoffs in single-agent
subnetworks”, IEEE WCNC’99.

