
1-4244-1513-06/07/$25.00 (c)2007 IEEE  1 of 7 

NETWORK CONDITIONS MONITORING  
IN THE MOCKETS COMMUNICATIONS FRAMEWORK 

 
Cesare Stefanelli, Mauro Tortonesi 

ENgineering Department In Ferrara (ENDIF) 
University of Ferrara 

Ferrara, Italy 

 
and 

Marco Carvalho, Niranjan Suri 
Florida Institute for Human & Machine Cognition 

Pensacola, FL, USA 

 
ABSTRACT 

 
Communication between mobile devices in the MANET 
scenario exhibits significant reliability and performance 
problems. Traditional communication infrastructures 
designed for wired networks are not well suited for 
MANETs because they masquerade network level 
conditions. In the MANET scenario, instead, there is the 
need to expose current network conditions to applications, 
enabling them to adapt their behavior to changes in the 
quality of the communication links. In the context of a 
MANET-oriented communication framework (called 
Mockets), this paper presents a network conditions 
monitoring component which provides applications with 
timely and accurate information about communication 
channel characteristics. In particular, the paper focuses 
on the measurement of latency, obtained via Round Trip 
Time measurement, for which it presents three different 
algorithms. The experimental results show the 
performances of the different algorithms in a MANET-like 
emulation environment.  
 

I. INTRODUCTION 
 
In the MANET scenario, mobile devices can communicate 
and coordinate wirelessly without pre-installed 
infrastructures. Mobile nodes can move and can arbitrarily 
join or leave the network, dynamically changing the 
topology, the set of available resources, and the 
information sources. Therefore, communications in 
MANETs are subject to highly variable conditions and 
exhibit significant reliability and performance problems. 
Network-Centric Warfare often involves systems of this 
nature. 
 
Traditional communication infrastructures and protocols 
were designed for wired networks and steady-state 
communication channel conditions. In addition, they 
provide applications with a network transparent 
programming model, which completely masquerades the 
dynamicity of the communication channel. In those 
infrastructures, applications can not detect changes in 
channel status and can not adapt to highly varying network 
conditions [1]. 
 

For instance, the Internet Protocol Suite is often proposed 
as the foundation for communications in MANETs 
because of the significant benefits it provides in terms of 
standardization, wide equipment choices, and low setup 
and operations costs [2]. However, the TCP/IP 
programming model is not well suited for MANETs as it 
does not provide support for mobility and does not allow 
any applications-driven QoS adaptation decisions, e.g, by 
imposing a constraint on the number of packet 
retransmissions in order to decrease the latency in delivery 
of enqueued information. 
 
Today, it is generally accepted that the performance and 
robustness of distributed applications in MANET 
environments can be enhanced through network-aware 
programming models. These models provide applications 
with the information about the dynamically changing 
network conditions such as round-trip time and available 
bandwidth of the communication link. Depending on the 
current network conditions and the nature of the 
information being exchanged, applications can adapt their 
behavior dynamically by exploiting QoS adaptation 
mechanisms [3]. 
 
The Mockets framework is an example of a 
communications middleware specifically designed to 
address the challenges of MANET scenarios [4], [5]. 
Mockets is an application-level library that resides on top 
of the operating system and communication protocol stack. 
This favors easy deployment, platform independence, and 
portability. Mockets supports terminal mobility and 
permits migration of communication endpoints (Mockets 
stands for mobile-sockets). In addition, Mockets adopts a 
network-aware approach and exposes the dynamically 
changing network conditions to applications that can thus 
adapt their behavior accordingly. In this way, network-
aware Mockets applications can perform continuous 
service provisioning in spite of abrupt changes in current 
network conditions. This capability is important to enable 
the development of robust, adaptive, and efficient 
distributed applications in the MANET environment. 
 
In the context of the Mockets framework, this paper 
presents the network conditions monitoring component, 
which provides applications with timely and accurate 
information about varying communication channel 
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characteristics. For every established connection, the 
Mockets monitoring component continuously measures 
network level parameters, such as available bandwidth 
along the communication path, packet loss rate, round-trip 
time and peer reachability. In particular, the paper focuses 
on the measurement of network latency, obtained via 
Round Trip Time measurement, for which it proposes 
three algorithms: ACK-based, timestamp-based, and 
timestamp-based with compensation. The algorithms have 
different characteristics in terms of agility, stability, and 
computational overhead. The experimental results 
presented in the paper provide a performance comparison 
of the algorithms in two different emulation environments 
configured to reproduce MANET-like networking 
conditions.  
 

II. ADAPTIVE APPLICATIONS IN MANETS 
 
In a MANET environment, network conditions may be 
turbulent and chaotic. Node mobility, churn, and 
unreliability of wireless communications cause major 
fluctuations in the network resources available to 
applications. As a result, applications deployed in 
MANETs need to withstand abrupt changes in network 
performance and to dynamically adapt their QoS 
requirements accordingly. 
 
Traditional communication protocols provide applications 
with an inappropriate programming model that hinders 
their QoS adaptation process. In fact, by masking 
underlying network conditions, the traditional network 
programming model denies applications any feedback 
about network performance. This effectively prevents 
them from making informed and timely QoS adaptation 
decisions. 
 
There is a need for network-aware programming models 
which enable the development of adaptive applications on 
MANETs. This requires the introduction of 
communication middleware that continuously monitors 
network performance and processes collected data to 
extrapolate network statistics that are then provided to 
applications according to their specific interests. Timely 
and accurate network condition monitoring is of crucial 
importance to allow QoS adaptation [3]. 
 
Applications could then use the information about network 
conditions provided by the middleware to perform prompt 
and informed QoS adaptation decisions. In particular, 
applications could modulate their QoS requirements in the 
case of changes in the quality of the communication links. 
For instance, applications could decide to scale their 
service level by modifying their service logic. In the case 
of video, this adaptation might include changing the 

frequency, resolution, or color depth of the video frames 
they exchange. Alternatively, applications can improve 
their resilience to channel unreliability by exploiting 
different communication mechanisms such as redundant 
retransmissions, resizing of network buffers, modulation of 
transmission priorities, or partial reliability mechanisms. 
 

III. THE MOCKETS FRAMEWORK 
 
The Mockets framework is an application-level 
communications library that has been designed to support 
adaptive applications in MANET environments. Mockets 
provides a number of unique features including multiple 
service classes (with options for reliability and 
sequencing), prioritization, message tagging and 
replacement, detailed communication statistics, numerous 
timeout options, policy-based bandwidth control, and 
endpoint migration. 
 
The Mockets framework has been realized as a library that 
resides at the application level and not as part of the 
operating system kernel or network protocol stack. This 
was an important design choice in order to support easy 
deployment, platform independence, and phased 
utilization. By being operating system and network stack 
agnostic, the Mockets framework can be used in any 
operating system environment and is currently available 
for Win32, Linux, and MacOSX platforms. Also, being an 
application library allows a subset of the applications to 
use Mockets while other applications can continue to use 
TCP and UDP. This facilitates deployment by allowing 
applications to be gradually migrated to use Mockets 
instead of the sockets API. 
 
Mockets is extensively used in several research projects, 
such as the Agile Computing Framework for opportunistic 
resource discovery and exploitation in extremely dynamic 
environments [6]. In addition, the Mockets communication 
library has been successfully used by the Army Research 
Laboratory as part of the Warrior's Edge initiative of the 
Horizontal Fusion Portfolio's Quantum Leap 
demonstrations and in the C4ISR On The Move exercise. 
Finally, the library is also currently being used by the Air 
Force Research Laboratory in internal experimentation and 
evaluation. More detailed information about Mockets, 
including a throughput comparison with TCP, is available 
in [4], [5], [7]. 
 
Mockets provides applications with several fine-grained 
QoS adaptation mechanisms, leaving them the task of 
implementing appropriate adaptation strategies and 
policies. The rationale behind this strict separation of 
concerns is that only applications have the required 
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knowledge to perform decisions about adaptation, 
according to service logic and user preferences. 
 
QoS adaptation mechanisms provided by Mockets include 
adjustment of sender and receiver buffer, aggressive 
retransmissions, partial reliability, transmission priority 
modulation, and cancellation and/or replacement of 
obsolete information in the transmission queue. The wide 
range of QoS adaptation mechanisms provided by the 
Mockets middleware allow applications to choose the best 
suited service adaptation strategy depending on application 
logic, current network conditions, and user preferences. 
 
To support applications in performing prompt and smart 
QoS adaptation decisions, Mockets provides them with 
timely and accurate information about network conditions. 
In particular, Mockets gathers and exports a number of 
parameters: time since last contact, bytes sent, packets 
sent, packets retransmitted, bytes received, packets 
received, packets discarded (three different categories), 
estimated RTT, pending data size, pending queue size, 
unacknowledged data size and unacknowledged queue 
size. In addition, counts of messages sent (overall and per 
message type) are also available. The rest of the paper 
presents in detail the network conditions monitoring 
function of Mockets, with a special emphasis on network 
latency estimation. 
 
As an example of Mockets-based application, let us 
consider a disaster recovery scenario where a human 
operator commands a robot working in hazardous 
environment. The remote control application needs to deal 
with time-sensitive data (such as a video feed from a 
camera installed on the robot and periodic update 
messages from the robot sensors) and critical data (such as 
movement commands from the operator). As a result, it 
can decide to exploit different delivery services, among the 
many provided by the Mockets middleware, for the two 
classes of data. For instance, the application could use 
sequential unreliable delivery for sensor updates and video 
frames, and reliable delivery with aggressive 
retransmissions for commands from the operator. This 
would ensure the delivery and processing of critical data 
with the utmost precedence, and guarantee the correct 
operation of the robot in emergency situations. In addition, 
Mockets monitors network conditions and can notify the 
application in the case of a communication channel quality 
falling below a given threshold. The application can thus 
downscale its service level by reducing the quality or 
frequency of video frames or sensor updates. 
 

IV. NETWORK CONDITIONS MONITORING  
IN MOCKETS 

 

The Mockets middleware monitors network conditions and 
provides applications with timely and accurate information 
about the underlying communication channels 
characteristics. In particular, for every established 
connection, Mockets continuously monitors the channel 
status along the communication path, performing both 
estimation of network level parameters and 
storage/processing of obtained data at the end points. 
Mockets adopts the distributed end-to-end approach 
because that is better suited to the MANET environment 
than centralized solutions. In fact, the topology of 
MANETs is extremely dynamic, thus preventing the 
storage and processing of network monitoring information 
on server nodes along the communication path. In 
addition, the election of server nodes executing network 
monitoring tasks on account of other nodes raises both 
fairness (e.g., server nodes would consume their batteries 
faster) and security concerns (e.g., server nodes might 
maliciously provide false information). 
 
The Mockets middleware implements a hybrid network 
monitoring scheme. In fact, Mockets performs both active 
measures by means of packet probing (e.g., for peer 
reachability and bandwidth measurement) and passive 
measures (e.g., for collecting statistics about connections). 
This dual scheme combines the benefits of both active 
monitoring, in terms of agile and broad spectrum 
measures, and passive monitoring, in terms of low network 
overhead. As a result, the hybrid approach is particularly 
well suited for highly dynamic networking environments 
in which wireless communications take place [3], [8]. 
 
The Mockets middleware is also capable of leveraging 
information provided by lower-level protocols. In such 
cases, end-to-end metrics are augmented with local 
information about link quality and MAC retransmissions, 
as well as details about local topology and contention 
graph estimates. One example of such an application is the 
integrated version of Mockets and IHMC’s Xlayer 
communications substrate [9], which currently provides 
synchronized aggregate logging capabilities across 
multiple layers, mapping Mockets data flows with actual 
MAC packet transmissions. The same capabilities can be 
extended to support a feedback loop between Mockets and 
lower level protocols (MAC and PHY) to enable 
application-driven MAC scheduling and topology 
management. 
 
Mockets-based applications can directly query the 
middleware for the current value of the desired network 
level parameters. For maximum flexibility, applications 
can also adopt a publish-subscribe model to register their 
interest in a specific set of parameters. Mockets will then 
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notify applications when the registered parameters change 
via a callback interface. 
 
In the Mockets architecture, as depicted in Figure 1, the 
Network Conditions Monitor (NCM) is the component that 
monitors network status, processes the collected 
information and provides it to applications. NCM 
interfaces with the Receiver component to collect 
information about network conditions from the underlying 
layer, and with the Transmitter component to schedule the 
transmission of active probes in the network. 
 
In particular, the NCM component detects peer 
unreachability via a keep-alive mechanism, which allows 
quick discovery of problems at the link and network 
layers. For instance, NCM can detect changes in the 
network layer address of a device and can cooperate with 
the Session Management component to support terminal 
mobility (by enabling automatic rebinding of established 
connections without forcing applications to shut down and 
reinstate all their network connections). 
 
In addition, the NCM component performs bandwidth 
estimation by processing information obtained from the 
XLayer substrate and by actively probing the network 
using packet dispersion mechanisms [10]. NCM also 
passively monitors the status of established connections, 
collecting statistics such as packet loss rate, number of 
retransmitted packets, etc. Finally, NCM performs latency 
estimation by using the mechanisms described in this 
paper. 

 
Figure 1.  The Network Conditions Monitor component in the Mockets 

middleware. 
 

V. MONITORING NETWORK LATENCY 
 
Latency is an extremely important parameter in distributed 
applications. It is of paramount importance in time-
sensitive, e.g., multimedia streaming or VoIP, and 

proximity-based applications, e.g., overlay construction or 
server redirection [11]. 
 
Network latency monitoring in Mockets is currently 
performed by measuring the RTT of established 
connections. Although the latency in TX and RX 
directions of a communication path can significantly vary, 
especially in MANET scenarios, assuming that network 
latency is half the RTT is an acceptable simplification. 
 
Mockets implements three RTT measurement algorithms, 
with different trade-offs between their promptness of 
reaction to changes (agility), resistance to spurious 
fluctuations in the measure (stability) and resource 
consumption (overhead). None of the algorithms can be 
perfectly suited for every situation and working 
environment. Instead, applications can choose which 
algorithm to use according to their service logic, user 
preferences and current execution context, e.g., network 
status and battery level. Mockets was designed to be 
highly configurable and allows applications to choose the 
desired RTT estimation algorithm orthogonally. As of this 
writing, the choice must be done at compile time, but 
future versions of the middleware will permit switching 
between different algorithms at run time. 
 
The RTT measurement implemented in Mockets are: 
ACK-based, timestamp-based, and timestamp-based with 
compensation.  
 
The ACK-based algorithm simply measures RTT as the 
difference seen at the sender between the time an ACK is 
received and the time the packet was sent. Retransmitted 
packets are not considered in this measure. 
 
The timestamp-based algorithm introduces a timestamp in 
every transmitted message. Receivers return the timestamp 
in the ACK. RTT is then calculated by the sender as the 
difference between the time an ACK is received and the 
timestamp. This algorithm considers retransmitted 
messages in RTT measurement and therefore is more agile 
than the previous one in the case of high packet loss rate. 
 
The timestamp-based algorithm with compensation is a 
variation of the timestamp-based algorithm in which the 
receiver considers the message processing time in ACK 
responses and decreases the timestamp accordingly before 
returning the ACK to the sender. This algorithm is the 
most accurate in the case of heavy load or scarcity of 
computational resources at the receiver. 
 
Since the RTT values obtained from measurement samples 
can exhibit abrupt and significant changes, Mockets tries 
to mitigate the influence of transient variations and 
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glitches by considering a smoothed RTT value. In 
particular, Mockets currently adopts the traditional RTT 
smoothing algorithm of TCP, which is based on an 
exponentially weighted moving average. This algorithm 
has good stability but poor agility characteristics and might 
not be best suited for MANET environments. We are 
evaluating other smoothing algorithms with different 
trade-offs between agility and stability. 
 

VI. EXPERIMENTAL RESULTS 
 
We have tested the performance of the 3 RTT 
measurement algorithms in order to point out their 
different behaviors in terms of agility and stability. We 
have performed all the experiments in an emulation 
environment where we can better control both variations in 
network parameters to estimate and the network conditions 
of the environment (e.g., packet loss rate). 
 
The experimental testbed is composed of two Centrino 2.0 
GHz laptops running Linux interconnected via a 100 Mbps 
802.3 wired network. In the first test, one of the computers 
runs Netem, a network emulator included in the Linux 
kernel which can apply several effects to the outgoing 
traffic flow in order to reproduce the behavior/dynamics of 
a real wireless network. 
 
We have configured Netem to vary values of network 
delay between the two hosts and to enforce a high packet 
loss rate (40%), in order to emulate a networking 
environment with highly unreliable communications, 
typical of the MANET scenario. 
 
The first test compares the RTT measurement algorithms 
in the case of a single abrupt change in network latency. In 
particular, we have instantaneously increased the network 
delay parameter in the Netem-based emulation 
environment from 20ms to 40ms. Figures 2 and 3 plot the 
Smoothed RTT (SRTT) estimation performed by the 
Mockets framework against the delay imposed by Netem 
using the ACK-based and timestamp-based algorithms 
respectively.  
 
There is a small but significant difference between the 
results obtained through the two algorithms. In fact, since 
it considers retransmitted packets in RTT measurement, 
the timestamp-based algorithm can capture higher 
dynamics in changes to network delay and is therefore 
more agile than the ACK-based one. Unfortunately, the 
RTT smoothing algorithm currently adopted in Mockets is 
not capable to take full advantage of the greater amount of 
information provided by timestamp-based RTT 
measurement algorithm. 

We do not show the results obtained using the timestamp-
based algorithm with compensation, as they are not 
significantly different from the ones presented in Figure 3. 
This is justified by the fact that in the testing environment 
there is no scarcity of computational resources at the 
receiver and therefore the two timestamp-based algorithms 
have the same behavior and expected outcome. 
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Figure 2.  SRTT estimation using ACK-based algorithm in the case of a 

single abrupt change in network latency. 
 

SRTT estimation using timestamp-based algorithm
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Figure 3. SRTT estimation using timestamp-based algorithm in the case 

of a single abrupt change in network latency. 
 
In the second test, the laptops are connected via a Pentium 
4 2.0 GHz PC running NISTNet, a network emulator 
which allows the enforcement of the same network effects 
supported by Netem, but with a finer-grained resolution. 
All the traffic between the laptops is routed through the 
NISTNet machine, which applies the desired effects to the 
incoming traffic flow. NISTNet was configured to enforce 
the same emulation parameters adopted for the previous 
test (40% packet loss). 
 
The second test performs a comparison of the RTT 
measurement algorithms in the case of small but 
continuous variations in network latency. We have 
configured NISTNet to increase the network latency from 
20ms to 40ms and then decrease it again to 20ms in steps 
of 1ms. Figures 4 and 5 plot the SRTT estimation 
performed by the Mockets framework against the delay 
imposed by NISTNet using the ACK-based and 
timestamp-based with compensation algorithms 
respectively. 
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The timestamp-based with compensation algorithm 
provides a more agile and accurate estimation of network 
latency than the ACK-based one. The difference between 
the two algorithms is more significant than in the previous 
experiment. 
 
We do not show the results obtained using the timestamp-
based algorithm as they are not significantly different from 
the ones obtained using the timestamp-based algorithm 
with compensation. As in the previous test, this is an 
expected result due to the abundance of computational 
resources at both end hosts. 
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Figure 4. SRTT estimation using ACK-based algorithm in the case of 

slow continuous changes in network latency. 
 

SRTT estimation using timestamp-based with 
compensation algorithm
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Figure 5. SRTT estimation using timestamp-based with compensation 

algorithm in the case of slow continuous changes in network 
latency. 

 
VII. RELATED WORK 

 
The design and implementation of the Mockets framework 
has required investigation in several areas of research. 
Network-awareness in dynamic environments is not a new 
concept in distributed systems research. In their influential 
work, Bolliger and Gross proposed a framework based on 
a feedback closed-loop that controls adjustment of an 
application to network properties [1]. However, their 
framework is only theoretical and they do not provide an 
actual implementation. 
 

Many other research proposals have studied network 
conditions monitoring in dynamic distributed 
environments. However, most of these studies, such as the 
Remos project, perform centralized monitoring of resource 
availability/utilization [12] and are therefore not well 
suited for the MANET environment. Some other research 
projects, like Enable [13], simply focus on automatic fine 
tuning of TCP connections to improve applications 
performance without increasing their robustness and 
resilience to variations in network conditions. Other 
proposals perform both monitoring and QoS adaptation. 
However, most of theses studies such as Odyssey [14] and 
A3 [15] require the deployment of a dedicated QoS 
adaptation component for every type service, thus 
preventing the realization of common adaptation strategies 
for different services. Mockets goes beyond these 
limitations and provides a network-aware programming 
model which enables the development of robust and 
adaptive applications on MANETs by means of 
decentralized end-to-end network conditions monitoring 
and service-agnostic QoS adaptation mechanisms. 
 
With regards to network latency estimation, research 
proposals can be divided in two categories. Proposals of 
the first category provide one-way latency between two 
hosts by calculating their distance in a coordinate space 
where Euclidean distance represents latency in 
communications [11], [16]. This approach requires the 
deployment of reference servers with a fixed and well-
known position in the coordinate space and is therefore not 
well suited for the MANET scenario. 
 
The second category of proposals calculate network 
latency via RTT estimation. In particular, researchers have 
especially focused on the realization of RTT smoothing 
algorithms with good stability and agility characteristics 
[17], [18]. Mockets adopts the same approach and, in 
addition, integrates the network latency estimation in a 
framework to support the realization of QoS-adaptive 
applications in MANETs. 
 

VIII. CONCLUSIONS AND FUTURE WORK 
 
The Mockets middleware provides applications with a 
network-aware programming model suitable to the highly 
dynamic MANET environment. The Mockets Network 
Conditions Monitoring presented in this paper naturally 
complements the QoS adaptation mechanisms, thus 
enabling Mockets applications to perform informed service 
tailoring decisions in the case of abrupt changes in the 
quality of the communication channels. 
 
We are currently working on the Mockets network 
monitoring component in order to introduce new latency 
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estimation algorithms (i.e., the latency estimation for 
single-direction of communication) and to extend the 
network parameters measurements including the available 
bandwidth and network capacity. 
 
We are also realizing a module for the ns2 simulator 
implementing Mockets-based communications, so that we 
can run performance comparisons of our work with other 
related proposals under the same working conditions. 
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