
1-4244-1513-06/07/$25.00 (c)2007 IEEE 1 of 7

NETWORK CONDITIONS MONITORING
IN THE MOCKETS COMMUNICATIONS FRAMEWORK

Cesare Stefanelli, Mauro Tortonesi

ENgineering Department In Ferrara (ENDIF)
University of Ferrara

Ferrara, Italy

and

Marco Carvalho, Niranjan Suri
Florida Institute for Human & Machine Cognition

Pensacola, FL, USA

ABSTRACT

Communication between mobile devices in the MANET
scenario exhibits significant reliability and performance
problems. Traditional communication infrastructures
designed for wired networks are not well suited for
MANETs because they masquerade network level
conditions. In the MANET scenario, instead, there is the
need to expose current network conditions to applications,
enabling them to adapt their behavior to changes in the
quality of the communication links. In the context of a
MANET-oriented communication framework (called
Mockets), this paper presents a network conditions
monitoring component which provides applications with
timely and accurate information about communication
channel characteristics. In particular, the paper focuses
on the measurement of latency, obtained via Round Trip
Time measurement, for which it presents three different
algorithms. The experimental results show the
performances of the different algorithms in a MANET-like
emulation environment.

I. INTRODUCTION

In the MANET scenario, mobile devices can communicate
and coordinate wirelessly without pre-installed
infrastructures. Mobile nodes can move and can arbitrarily
join or leave the network, dynamically changing the
topology, the set of available resources, and the
information sources. Therefore, communications in
MANETs are subject to highly variable conditions and
exhibit significant reliability and performance problems.
Network-Centric Warfare often involves systems of this
nature.

Traditional communication infrastructures and protocols
were designed for wired networks and steady-state
communication channel conditions. In addition, they
provide applications with a network transparent
programming model, which completely masquerades the
dynamicity of the communication channel. In those
infrastructures, applications can not detect changes in
channel status and can not adapt to highly varying network
conditions [1].

For instance, the Internet Protocol Suite is often proposed
as the foundation for communications in MANETs
because of the significant benefits it provides in terms of
standardization, wide equipment choices, and low setup
and operations costs [2]. However, the TCP/IP
programming model is not well suited for MANETs as it
does not provide support for mobility and does not allow
any applications-driven QoS adaptation decisions, e.g, by
imposing a constraint on the number of packet
retransmissions in order to decrease the latency in delivery
of enqueued information.

Today, it is generally accepted that the performance and
robustness of distributed applications in MANET
environments can be enhanced through network-aware
programming models. These models provide applications
with the information about the dynamically changing
network conditions such as round-trip time and available
bandwidth of the communication link. Depending on the
current network conditions and the nature of the
information being exchanged, applications can adapt their
behavior dynamically by exploiting QoS adaptation
mechanisms [3].

The Mockets framework is an example of a
communications middleware specifically designed to
address the challenges of MANET scenarios [4], [5].
Mockets is an application-level library that resides on top
of the operating system and communication protocol stack.
This favors easy deployment, platform independence, and
portability. Mockets supports terminal mobility and
permits migration of communication endpoints (Mockets
stands for mobile-sockets). In addition, Mockets adopts a
network-aware approach and exposes the dynamically
changing network conditions to applications that can thus
adapt their behavior accordingly. In this way, network-
aware Mockets applications can perform continuous
service provisioning in spite of abrupt changes in current
network conditions. This capability is important to enable
the development of robust, adaptive, and efficient
distributed applications in the MANET environment.

In the context of the Mockets framework, this paper
presents the network conditions monitoring component,
which provides applications with timely and accurate
information about varying communication channel

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 14:12 from IEEE Xplore. Restrictions apply.

 2 of 7

characteristics. For every established connection, the
Mockets monitoring component continuously measures
network level parameters, such as available bandwidth
along the communication path, packet loss rate, round-trip
time and peer reachability. In particular, the paper focuses
on the measurement of network latency, obtained via
Round Trip Time measurement, for which it proposes
three algorithms: ACK-based, timestamp-based, and
timestamp-based with compensation. The algorithms have
different characteristics in terms of agility, stability, and
computational overhead. The experimental results
presented in the paper provide a performance comparison
of the algorithms in two different emulation environments
configured to reproduce MANET-like networking
conditions.

II. ADAPTIVE APPLICATIONS IN MANETS

In a MANET environment, network conditions may be
turbulent and chaotic. Node mobility, churn, and
unreliability of wireless communications cause major
fluctuations in the network resources available to
applications. As a result, applications deployed in
MANETs need to withstand abrupt changes in network
performance and to dynamically adapt their QoS
requirements accordingly.

Traditional communication protocols provide applications
with an inappropriate programming model that hinders
their QoS adaptation process. In fact, by masking
underlying network conditions, the traditional network
programming model denies applications any feedback
about network performance. This effectively prevents
them from making informed and timely QoS adaptation
decisions.

There is a need for network-aware programming models
which enable the development of adaptive applications on
MANETs. This requires the introduction of
communication middleware that continuously monitors
network performance and processes collected data to
extrapolate network statistics that are then provided to
applications according to their specific interests. Timely
and accurate network condition monitoring is of crucial
importance to allow QoS adaptation [3].

Applications could then use the information about network
conditions provided by the middleware to perform prompt
and informed QoS adaptation decisions. In particular,
applications could modulate their QoS requirements in the
case of changes in the quality of the communication links.
For instance, applications could decide to scale their
service level by modifying their service logic. In the case
of video, this adaptation might include changing the

frequency, resolution, or color depth of the video frames
they exchange. Alternatively, applications can improve
their resilience to channel unreliability by exploiting
different communication mechanisms such as redundant
retransmissions, resizing of network buffers, modulation of
transmission priorities, or partial reliability mechanisms.

III. THE MOCKETS FRAMEWORK

The Mockets framework is an application-level
communications library that has been designed to support
adaptive applications in MANET environments. Mockets
provides a number of unique features including multiple
service classes (with options for reliability and
sequencing), prioritization, message tagging and
replacement, detailed communication statistics, numerous
timeout options, policy-based bandwidth control, and
endpoint migration.

The Mockets framework has been realized as a library that
resides at the application level and not as part of the
operating system kernel or network protocol stack. This
was an important design choice in order to support easy
deployment, platform independence, and phased
utilization. By being operating system and network stack
agnostic, the Mockets framework can be used in any
operating system environment and is currently available
for Win32, Linux, and MacOSX platforms. Also, being an
application library allows a subset of the applications to
use Mockets while other applications can continue to use
TCP and UDP. This facilitates deployment by allowing
applications to be gradually migrated to use Mockets
instead of the sockets API.

Mockets is extensively used in several research projects,
such as the Agile Computing Framework for opportunistic
resource discovery and exploitation in extremely dynamic
environments [6]. In addition, the Mockets communication
library has been successfully used by the Army Research
Laboratory as part of the Warrior's Edge initiative of the
Horizontal Fusion Portfolio's Quantum Leap
demonstrations and in the C4ISR On The Move exercise.
Finally, the library is also currently being used by the Air
Force Research Laboratory in internal experimentation and
evaluation. More detailed information about Mockets,
including a throughput comparison with TCP, is available
in [4], [5], [7].

Mockets provides applications with several fine-grained
QoS adaptation mechanisms, leaving them the task of
implementing appropriate adaptation strategies and
policies. The rationale behind this strict separation of
concerns is that only applications have the required

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 14:12 from IEEE Xplore. Restrictions apply.

 3 of 7

knowledge to perform decisions about adaptation,
according to service logic and user preferences.

QoS adaptation mechanisms provided by Mockets include
adjustment of sender and receiver buffer, aggressive
retransmissions, partial reliability, transmission priority
modulation, and cancellation and/or replacement of
obsolete information in the transmission queue. The wide
range of QoS adaptation mechanisms provided by the
Mockets middleware allow applications to choose the best
suited service adaptation strategy depending on application
logic, current network conditions, and user preferences.

To support applications in performing prompt and smart
QoS adaptation decisions, Mockets provides them with
timely and accurate information about network conditions.
In particular, Mockets gathers and exports a number of
parameters: time since last contact, bytes sent, packets
sent, packets retransmitted, bytes received, packets
received, packets discarded (three different categories),
estimated RTT, pending data size, pending queue size,
unacknowledged data size and unacknowledged queue
size. In addition, counts of messages sent (overall and per
message type) are also available. The rest of the paper
presents in detail the network conditions monitoring
function of Mockets, with a special emphasis on network
latency estimation.

As an example of Mockets-based application, let us
consider a disaster recovery scenario where a human
operator commands a robot working in hazardous
environment. The remote control application needs to deal
with time-sensitive data (such as a video feed from a
camera installed on the robot and periodic update
messages from the robot sensors) and critical data (such as
movement commands from the operator). As a result, it
can decide to exploit different delivery services, among the
many provided by the Mockets middleware, for the two
classes of data. For instance, the application could use
sequential unreliable delivery for sensor updates and video
frames, and reliable delivery with aggressive
retransmissions for commands from the operator. This
would ensure the delivery and processing of critical data
with the utmost precedence, and guarantee the correct
operation of the robot in emergency situations. In addition,
Mockets monitors network conditions and can notify the
application in the case of a communication channel quality
falling below a given threshold. The application can thus
downscale its service level by reducing the quality or
frequency of video frames or sensor updates.

IV. NETWORK CONDITIONS MONITORING
IN MOCKETS

The Mockets middleware monitors network conditions and
provides applications with timely and accurate information
about the underlying communication channels
characteristics. In particular, for every established
connection, Mockets continuously monitors the channel
status along the communication path, performing both
estimation of network level parameters and
storage/processing of obtained data at the end points.
Mockets adopts the distributed end-to-end approach
because that is better suited to the MANET environment
than centralized solutions. In fact, the topology of
MANETs is extremely dynamic, thus preventing the
storage and processing of network monitoring information
on server nodes along the communication path. In
addition, the election of server nodes executing network
monitoring tasks on account of other nodes raises both
fairness (e.g., server nodes would consume their batteries
faster) and security concerns (e.g., server nodes might
maliciously provide false information).

The Mockets middleware implements a hybrid network
monitoring scheme. In fact, Mockets performs both active
measures by means of packet probing (e.g., for peer
reachability and bandwidth measurement) and passive
measures (e.g., for collecting statistics about connections).
This dual scheme combines the benefits of both active
monitoring, in terms of agile and broad spectrum
measures, and passive monitoring, in terms of low network
overhead. As a result, the hybrid approach is particularly
well suited for highly dynamic networking environments
in which wireless communications take place [3], [8].

The Mockets middleware is also capable of leveraging
information provided by lower-level protocols. In such
cases, end-to-end metrics are augmented with local
information about link quality and MAC retransmissions,
as well as details about local topology and contention
graph estimates. One example of such an application is the
integrated version of Mockets and IHMC’s Xlayer
communications substrate [9], which currently provides
synchronized aggregate logging capabilities across
multiple layers, mapping Mockets data flows with actual
MAC packet transmissions. The same capabilities can be
extended to support a feedback loop between Mockets and
lower level protocols (MAC and PHY) to enable
application-driven MAC scheduling and topology
management.

Mockets-based applications can directly query the
middleware for the current value of the desired network
level parameters. For maximum flexibility, applications
can also adopt a publish-subscribe model to register their
interest in a specific set of parameters. Mockets will then

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 14:12 from IEEE Xplore. Restrictions apply.

 4 of 7

notify applications when the registered parameters change
via a callback interface.

In the Mockets architecture, as depicted in Figure 1, the
Network Conditions Monitor (NCM) is the component that
monitors network status, processes the collected
information and provides it to applications. NCM
interfaces with the Receiver component to collect
information about network conditions from the underlying
layer, and with the Transmitter component to schedule the
transmission of active probes in the network.

In particular, the NCM component detects peer
unreachability via a keep-alive mechanism, which allows
quick discovery of problems at the link and network
layers. For instance, NCM can detect changes in the
network layer address of a device and can cooperate with
the Session Management component to support terminal
mobility (by enabling automatic rebinding of established
connections without forcing applications to shut down and
reinstate all their network connections).

In addition, the NCM component performs bandwidth
estimation by processing information obtained from the
XLayer substrate and by actively probing the network
using packet dispersion mechanisms [10]. NCM also
passively monitors the status of established connections,
collecting statistics such as packet loss rate, number of
retransmitted packets, etc. Finally, NCM performs latency
estimation by using the mechanisms described in this
paper.

Figure 1. The Network Conditions Monitor component in the Mockets

middleware.

V. MONITORING NETWORK LATENCY

Latency is an extremely important parameter in distributed
applications. It is of paramount importance in time-
sensitive, e.g., multimedia streaming or VoIP, and

proximity-based applications, e.g., overlay construction or
server redirection [11].

Network latency monitoring in Mockets is currently
performed by measuring the RTT of established
connections. Although the latency in TX and RX
directions of a communication path can significantly vary,
especially in MANET scenarios, assuming that network
latency is half the RTT is an acceptable simplification.

Mockets implements three RTT measurement algorithms,
with different trade-offs between their promptness of
reaction to changes (agility), resistance to spurious
fluctuations in the measure (stability) and resource
consumption (overhead). None of the algorithms can be
perfectly suited for every situation and working
environment. Instead, applications can choose which
algorithm to use according to their service logic, user
preferences and current execution context, e.g., network
status and battery level. Mockets was designed to be
highly configurable and allows applications to choose the
desired RTT estimation algorithm orthogonally. As of this
writing, the choice must be done at compile time, but
future versions of the middleware will permit switching
between different algorithms at run time.

The RTT measurement implemented in Mockets are:
ACK-based, timestamp-based, and timestamp-based with
compensation.

The ACK-based algorithm simply measures RTT as the
difference seen at the sender between the time an ACK is
received and the time the packet was sent. Retransmitted
packets are not considered in this measure.

The timestamp-based algorithm introduces a timestamp in
every transmitted message. Receivers return the timestamp
in the ACK. RTT is then calculated by the sender as the
difference between the time an ACK is received and the
timestamp. This algorithm considers retransmitted
messages in RTT measurement and therefore is more agile
than the previous one in the case of high packet loss rate.

The timestamp-based algorithm with compensation is a
variation of the timestamp-based algorithm in which the
receiver considers the message processing time in ACK
responses and decreases the timestamp accordingly before
returning the ACK to the sender. This algorithm is the
most accurate in the case of heavy load or scarcity of
computational resources at the receiver.

Since the RTT values obtained from measurement samples
can exhibit abrupt and significant changes, Mockets tries
to mitigate the influence of transient variations and

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 14:12 from IEEE Xplore. Restrictions apply.

 5 of 7

glitches by considering a smoothed RTT value. In
particular, Mockets currently adopts the traditional RTT
smoothing algorithm of TCP, which is based on an
exponentially weighted moving average. This algorithm
has good stability but poor agility characteristics and might
not be best suited for MANET environments. We are
evaluating other smoothing algorithms with different
trade-offs between agility and stability.

VI. EXPERIMENTAL RESULTS

We have tested the performance of the 3 RTT
measurement algorithms in order to point out their
different behaviors in terms of agility and stability. We
have performed all the experiments in an emulation
environment where we can better control both variations in
network parameters to estimate and the network conditions
of the environment (e.g., packet loss rate).

The experimental testbed is composed of two Centrino 2.0
GHz laptops running Linux interconnected via a 100 Mbps
802.3 wired network. In the first test, one of the computers
runs Netem, a network emulator included in the Linux
kernel which can apply several effects to the outgoing
traffic flow in order to reproduce the behavior/dynamics of
a real wireless network.

We have configured Netem to vary values of network
delay between the two hosts and to enforce a high packet
loss rate (40%), in order to emulate a networking
environment with highly unreliable communications,
typical of the MANET scenario.

The first test compares the RTT measurement algorithms
in the case of a single abrupt change in network latency. In
particular, we have instantaneously increased the network
delay parameter in the Netem-based emulation
environment from 20ms to 40ms. Figures 2 and 3 plot the
Smoothed RTT (SRTT) estimation performed by the
Mockets framework against the delay imposed by Netem
using the ACK-based and timestamp-based algorithms
respectively.

There is a small but significant difference between the
results obtained through the two algorithms. In fact, since
it considers retransmitted packets in RTT measurement,
the timestamp-based algorithm can capture higher
dynamics in changes to network delay and is therefore
more agile than the ACK-based one. Unfortunately, the
RTT smoothing algorithm currently adopted in Mockets is
not capable to take full advantage of the greater amount of
information provided by timestamp-based RTT
measurement algorithm.

We do not show the results obtained using the timestamp-
based algorithm with compensation, as they are not
significantly different from the ones presented in Figure 3.
This is justified by the fact that in the testing environment
there is no scarcity of computational resources at the
receiver and therefore the two timestamp-based algorithms
have the same behavior and expected outcome.

SRTT estimation using ACK-based algorithm

15

20

25

30

35

40

45

2,8 3 3,2 3,4 3,6 3,8 4

Time (sec)

La
te

nc
y

(m
se

c)

SRTT/2
Delay

Figure 2. SRTT estimation using ACK-based algorithm in the case of a

single abrupt change in network latency.

SRTT estimation using timestamp-based algorithm

15

20

25

30

35

40

45

2,5 2,7 2,9 3,1 3,3 3,5 3,7

Time (sec)

La
te

nc
y

(m
se

c)
SRTT/2
Delay

Figure 3. SRTT estimation using timestamp-based algorithm in the case

of a single abrupt change in network latency.

In the second test, the laptops are connected via a Pentium
4 2.0 GHz PC running NISTNet, a network emulator
which allows the enforcement of the same network effects
supported by Netem, but with a finer-grained resolution.
All the traffic between the laptops is routed through the
NISTNet machine, which applies the desired effects to the
incoming traffic flow. NISTNet was configured to enforce
the same emulation parameters adopted for the previous
test (40% packet loss).

The second test performs a comparison of the RTT
measurement algorithms in the case of small but
continuous variations in network latency. We have
configured NISTNet to increase the network latency from
20ms to 40ms and then decrease it again to 20ms in steps
of 1ms. Figures 4 and 5 plot the SRTT estimation
performed by the Mockets framework against the delay
imposed by NISTNet using the ACK-based and
timestamp-based with compensation algorithms
respectively.

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 14:12 from IEEE Xplore. Restrictions apply.

 6 of 7

The timestamp-based with compensation algorithm
provides a more agile and accurate estimation of network
latency than the ACK-based one. The difference between
the two algorithms is more significant than in the previous
experiment.

We do not show the results obtained using the timestamp-
based algorithm as they are not significantly different from
the ones obtained using the timestamp-based algorithm
with compensation. As in the previous test, this is an
expected result due to the abundance of computational
resources at both end hosts.

SRTT estimation using ACK-based algorithm

0
5
10
15
20
25
30
35
40
45

0 5 10 15 20

Time (sec)

La
te

nc
y

(m
se

c)

SRTT/2
Delay

Figure 4. SRTT estimation using ACK-based algorithm in the case of

slow continuous changes in network latency.

SRTT estimation using timestamp-based with
compensation algorithm

0

5

10
15

20

25

30

35

40
45

0 5 10 15 20

Time (sec)

La
te

nc
y

(m
se

c)

SRTT/2
Delay

Figure 5. SRTT estimation using timestamp-based with compensation

algorithm in the case of slow continuous changes in network
latency.

VII. RELATED WORK

The design and implementation of the Mockets framework
has required investigation in several areas of research.
Network-awareness in dynamic environments is not a new
concept in distributed systems research. In their influential
work, Bolliger and Gross proposed a framework based on
a feedback closed-loop that controls adjustment of an
application to network properties [1]. However, their
framework is only theoretical and they do not provide an
actual implementation.

Many other research proposals have studied network
conditions monitoring in dynamic distributed
environments. However, most of these studies, such as the
Remos project, perform centralized monitoring of resource
availability/utilization [12] and are therefore not well
suited for the MANET environment. Some other research
projects, like Enable [13], simply focus on automatic fine
tuning of TCP connections to improve applications
performance without increasing their robustness and
resilience to variations in network conditions. Other
proposals perform both monitoring and QoS adaptation.
However, most of theses studies such as Odyssey [14] and
A3 [15] require the deployment of a dedicated QoS
adaptation component for every type service, thus
preventing the realization of common adaptation strategies
for different services. Mockets goes beyond these
limitations and provides a network-aware programming
model which enables the development of robust and
adaptive applications on MANETs by means of
decentralized end-to-end network conditions monitoring
and service-agnostic QoS adaptation mechanisms.

With regards to network latency estimation, research
proposals can be divided in two categories. Proposals of
the first category provide one-way latency between two
hosts by calculating their distance in a coordinate space
where Euclidean distance represents latency in
communications [11], [16]. This approach requires the
deployment of reference servers with a fixed and well-
known position in the coordinate space and is therefore not
well suited for the MANET scenario.

The second category of proposals calculate network
latency via RTT estimation. In particular, researchers have
especially focused on the realization of RTT smoothing
algorithms with good stability and agility characteristics
[17], [18]. Mockets adopts the same approach and, in
addition, integrates the network latency estimation in a
framework to support the realization of QoS-adaptive
applications in MANETs.

VIII. CONCLUSIONS AND FUTURE WORK

The Mockets middleware provides applications with a
network-aware programming model suitable to the highly
dynamic MANET environment. The Mockets Network
Conditions Monitoring presented in this paper naturally
complements the QoS adaptation mechanisms, thus
enabling Mockets applications to perform informed service
tailoring decisions in the case of abrupt changes in the
quality of the communication channels.

We are currently working on the Mockets network
monitoring component in order to introduce new latency

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 14:12 from IEEE Xplore. Restrictions apply.

 7 of 7

estimation algorithms (i.e., the latency estimation for
single-direction of communication) and to extend the
network parameters measurements including the available
bandwidth and network capacity.

We are also realizing a module for the ns2 simulator
implementing Mockets-based communications, so that we
can run performance comparisons of our work with other
related proposals under the same working conditions.

ACKNOWLEDGEMENTS

This work is supported in part by the U.S. Army Research
Laboratory under Cooperative Agreement W911NF-04-2-
0013, by the U.S. Army Research Laboratory under the
Collaborative Technology Alliance Program, Cooperative
Agreement DAAD19-01-2-0009, by the Air Force
Research Laboratory under Cooperative Agreement
FA8750-06-2-0064, and by the Italian MIUR in the
framework of the Project “MOMA: a middleware
approach to MObile MultimodAl web services”.

REFERENCES

[1] J. Bolliger, T. Gross, A Framework-Based Approach to
the Development of Network-Aware Applications, IEEE
Transactions on Software Engineering, Vol. 24, No. 5, pp.
376-390, May 1998.
[2] M. Sarela, P. Nikander, Applying Host Identity
Protocotl to Tactical Networks, in Proceedings of 23rd
Military Communications Conference (MILCOM 2004),
Atlantic City, NJ, USA, October 2004.
[3] J. Cao, K. M. McNeill, D. Zhang, J. F. Jr. Numaker,
An Overview of network-aware applications for mobile
multimedia delivery, in Proceedings of 37th Annual Hawaii
International Conference on System Sciences, 2004.
[4] N. Suri, M. Tortonesi, M. Arguedas, M. Breedy, M.
Carvalho, R. Winkler, Mockets: A Comprehensive
Application-Level Communications Library, in
Proceedings of 24th Military Communications Conference
(MILCOM 2005), Atlantic City, NJ, USA, October 2005.
[5] M. Tortonesi, C. Stefanelli, N. Suri, M. Arguedas, M.
Breedy, Mockets: A Novel Message-oriented
Communication Middleware for the Wireless Internet, in
Proceedings of International Conference on Wireless
Information Networks and Systems (WINSYS 2006),
Setúbal, Portugal, August 2006.
[6] N. Suri, J. Bradshaw, M. Carvalho, T. Cowin, M.
Breedy, P. Groth, R. Saavedra, Agile computing: bridging
the gap between grid computing and ad-hoc peer-to-peer
resource sharing, in Proceedings of 3rd IEEE/ACM
International Symposium on Cluster Computing and the
Grid (CCGrid 2003), pp. 618-625, 12-15 May 2003.

[7] N. Suri, M. Carvalho, J. Lott, M. Tortonesi, J.
Bradshaw, M. Arguedas, M. Breedy, Policy-based
Bandwidth Management for Tactical Networks with the
Agile Computing Middleware, in Proceedings of 25th
Military Communications Conference (MILCOM 2006),
Atlantic City, NJ, USA, October 2006.
[8] B. Landfeldt, P. Sookavatana, A. Seneviratne, The
Case for a Hybrid Passive/Active Network Monitoring
Scheme in the Wireless Internet, in Proceedings of the 8th
IEEE International Conference on Networks (ICON 2000),
pp. 139-144, 2000.
[9] M. Carvalho, N. Suri, V. Shurbanov, E. Lloyd, A
Cross-layer Network Substrate for the Battlefield, in
Proceedings of the 25th Army Science Conference,
Orlando, FL, USA, 2006.
[10] R. S. Prasad, M. Murray, C. Dovrolis, K. Claffy,
Bandwidth estimation: Metrics, measurement techniques,
and tools, IEEE Network, 2003.
[11] S. Ratnasamy, M. Handley, R. Karp, S. Shenker,
Topologically aware overlay construction and server
selection, in Proceedings of IEEE INFOCOM'02, New
York, NY, USA, June 2002.
[12] B. Lowekamp, N. Miller, R. Karrer, T. Gross, P.
Steenkiste, Design Implementation and Evaluation of the
Remos Network Monitoring System, Journal of Grid
Computing, Vol. 1, No. 1, , pp. 75-93, May 2003, Kluwer.
[13] B. L. Tierney, D. Gunter, J. Lee, M. Stoufer, J. B.
Evans, Enabling Network-Aware Applications, in
Proceedings of 10th IEEE International Symposium on
High Performance Distributed Computing (HPDC-10 '01),
San Francisco, CA, USA, 2001.
[14] B. Noble, System Support for Mobile, Adaptive
Applications, IEEE Personal Communications, Vol. 7, No.
1, February 2000.
[15] Z. Zhuang, T. Chang, R. Sivakumar, A. Velayutham,
A3: Application-Aware Acceleration for Wireless Data
Networks, in Proceedings of the 12th annual international
conference on Mobile computing and networking
(MobiCom 2006), Los Angeles, CA, USA, 2006.
[16] K. Gummadi, S. Saroiu, S. Gribble, King: estimating
Latency between Arbitrary Internet End Hosts, in
Proceedings of the SIGCOMM Internet Measurement
Workshop (IMW 2002).
[17] M. Kim, B. Noble, Mobile Network Estimation, in
Proceedings of 7th Annual Conference on Mobile
Computing and Networking, July 2001.
[18] K. Jacobsson, H. Hjalmarsson, Niels Möller, K. H.
Johansson, Round-Trip time estimation in communication
networks using adaptive Kalman filtering, in: Reglermöte
2004, Gothenburg, Sweden, May 2004.

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 14:12 from IEEE Xplore. Restrictions apply.

