
 1 of 7

MOCKETS: A COMPREHENSIVE APPLICATION-LEVEL COMMUNICATIONS LIBRARY

Niranjan Suri1,2, Mauro Tortonesi1,3, Marco Arguedas1, Maggie Breedy1, Marco Carvalho1, Robert Winkler4
1Institute for Human & Machine Cognition, University of West Florida

2Lancaster University
3University of Ferrara

4U.S. Army Research Laboratory
{nsuri,mtortonesi,marguedas, mbreedy,mcarvalho}@ihmc.us; winkler@arl.army.mil

ABSTRACT

Mockets is a comprehensive communications library
designed to address challenges specific to mobile ad-hoc
networks. Mockets have been implemented at the
application-level to simplify deployment and portability.
Both stream-oriented and message-oriented abstractions
are supported, with the message-oriented service
providing multiple classes of service (reliable, unreliable,
sequenced, unsequenced), message tagging and
replacement, and prioritization. Mockets also interfaces
with a policy management infrastructure to support
bandwidth limitation. Finally, mockets supports
transparent migration of communication endpoints
across hosts without the need to terminate and
reestablish connections. Mockets provides similar
semantics to TCP but performs better than TCP on ad-
hoc networks.

INTRODUCTION

Mockets1 (for “mobile sockets”) is a comprehensive
communications library for applications. The design and
implementation of Mockets was motivated by the needs
of tactical military information networks, which are
typically wireless and ad-hoc with low bandwidth,
intermittent connectivity, and variable latency. The initial
implementation of Mockets was completed for use by the
Army Research Laboratory as part of the Warrior’s Edge
initiative of the Horizontal Fusion Portfolio’s Quantum
Leap demonstrations.

Mockets addresses specific challenges including the need
to operate on a mobile ad-hoc network (where TCP does
not perform optimally), provides a mechanism to detect
connection loss, allows applications to monitor network
performance, provides flexible buffering, and supports
policy-based control over application bandwidth
utilization.

Mockets has been designed to provide the following five
capabilities:
1) Application-level implementation of the

communications library in order to provide

1 In this paper, a capitalized “Mockets” refers to the software
package while a lowercase “mockets” is the plural of “mocket”.

flexibility, ease of distribution, and better integration
between the application and the communications
layer.

2) A TCP-style reliable, stream-oriented service that is
designed to operate on wireless ad-hoc networks
thereby making it easy to port existing applications to
the ad-hoc environment.

3) A message-oriented service that provides enhanced
capabilities such as message tagging and
replacement, different classes of service
(reliable/unreliable combined with sequenced/
unsequenced), and prioritization.

4) Transparent mobility of communication endpoints
from one host to another in order to support
migration of live processes with active network
connections.

5) Interface to a policy management system in order to
allow dynamic, external control over
communications resources used by applications.

The result is a flexible user-level communications library
with implementations in Java, C++, and C#. The
performance of Mockets is equal to or better than TCP
for the type of networks that were targeted, while
providing the additional desired capabilities.

The rest of this paper is organized as follows. Section two
presents the design of Mockets. Section three provides
some implementation details. Section four presents
experimental results and discussion. Section five briefly
describes the message mockets API. Finally, section six
concludes the paper.

MOCKETS DESIGN

The stream-oriented communication metaphor supported
by Mockets provides TCP socket semantics and has been
designed to bridge the gap between ad-hoc networks and
networking applications - typically written expecting
TCP stream socket communication semantics.

Prior research has demonstrated that TCP performs
poorly when deployed in ad-hoc environments. Several
researchers have investigated the shortcomings of TCP in
the context of wireless and ad-hoc networks [1] and
suggested modifications to improve performance [2] [3].
These studies show that the performance of the protocol

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 13:53 from IEEE Xplore. Restrictions apply.

 2 of 7

is severely affected in case of terminal mobility and lossy
channels, since the protocol interprets lost packets as
congestion and reduces the window sizes, with very slow
throughput recovery [4] [5] [6] [7]. Although the
proposed modifications to the TCP protocol show
promising improvements in simulations and experiments,
they have failed to be deployed in a widespread manner.
The difficulty is in converging upon a standard set of
modifications from the many alternatives available so
that they may be ubiquitously realized in a wide variety
of systems. To date, no such standard has been
developed.

The main design goal for stream mockets is to maintain
basic compatibility with traditional TCP stream sockets
to ease the task of porting legacy applications to the new
library. Mockets provides networking applications with
the ability to establish unicast, bidirectional, and reliable
stream-based communications with peer applications. It
implements an API that is very similar to the traditional
Java/BSD socket API, extended with some additional
capabilities that will be described later in this section. For
example, the Java implementation of Mockets provides
the Mocket, ServerMocket, MocketInputStream, and
MocketOutputStream classes that are counterparts to the
Java Socket, ServerSocket, SocketInputStream, and
SocketOutputStream classes.

For backwards compatibility with legacy TCP-based
applications, the communication protocol adopted for
stream mockets is similar to TCP. However, it also
includes several additional features to make it better
suited for deployment in ad-hoc networks and provides
reasonable performance, reliability, and robustness in
highly dynamic environments.

All the messages exchanged by the Mockets
communication protocol are embedded in UDP packets.
Reliability and stream abstractions are provided by
Mockets on top of the unreliable UDP packet delivery
service.

Similar to the Java/BSD sockets API, communications
between two unicast datagram mockets is established by
connecting an active mocket to a passive one listening on
a peer that (apart from explicit endpoint migration
commands issued at middleware or application level) will
not change during the entire communication.

Although based on a three-way handshake, the
connection setup procedure for a stream mocket is
different from the TCP socket handshake. On the server
side the communication is not established on the same
port on which the server application listens for incoming
connections, but on a new, system-assigned port.

The connection establishment process for the stream
mockets transport protocol is also optimized to work on
the highly dynamic and typically unreliable scenario of
ad-hoc networks. To improve the robustness of the
connection setup procedure, if a server mocket receives
more than one connection request message (the
equivalent of a SYN packet in TCP) from the same peer
application, it assumes that SYN_ACK replies are not
reaching the sender and it automatically increases the
frequency of acknowledgements for that connection. In
such cases, the frequency of acknowledgements is
increased progressively, at random intervals, to increase
the probabilities of packet delivery to the sender. This
self-regulating acknowledgement mechanism allows
mockets to dynamically adapt to specific network
conditions on a per-connection basis, increasing the
chances of a successful connection and avoiding
unnecessary additional traffic for protocol negotiation.
The connection teardown is similar to TCP except that
mockets allows the application to limit the wait time for
flushing data before closing the connection.

The Mockets communication protocol can also interact
with lower level protocols to find out if the cause for
packet loss is congestion, link error, terminal
disconnection, or route change. Simulations and
quantitative studies show that correctly exploiting this
kind of information in ad-hoc environments can lead to a
performance improvement in the transport protocol
throughput of up to 700% with respect to standard TCP
implementation [8].

Applications can query a mocket to retrieve information
on the current status of the communication with the
remote endpoint. The statistics reported are the number of
bytes and packets sent and received, the number of
packets retransmitted, and the number of discarded
received packets. Applications can query this information
if they desire to monitor the performance and reliability
of the connection and adapt their behavior if these
parameters fall below their desired QoS level.

The Mockets API allows the application to take full
control of most of the internal behaviors (e.g. changing
the default timeouts) of the transport protocol. This
allows the development of robust applications that, in
case of heavy packet losses along the communication
path, may choose to take appropriate action (e.g.,
downscaling the stream of application level data
whenever possible, sending all messages using reliable
flows in case of message mockets, increasing the
retransmission timeout) in order to adapt the
communication to current network conditions while
improving reliability.

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 13:53 from IEEE Xplore. Restrictions apply.

 3 of 7

Keep-Alive and Connection-Loss Detection

The Mockets protocol provides a keep-alive mechanism,
which is enabled by default. The communications
behavior pattern of some applications is of the nature
where one end-point simply listens for updates arriving
from the other end-point at random intervals. If no
messages have been sent to or received from the peer
application during a (configurable) amount of time,
Mockets will automatically send a heartbeat message to
the remote communication endpoint. This simple keep-
alive mechanism allows quick detection of problems at
the link and network layers. Without keep-alives, the
receiving end-point does not become aware of a lost
connection.

This keep-alive mechanism is similar to the one
introduced in TCP, but more flexible and powerful.
Mockets provide the application with the option of
registering a callback, which is invoked when the
endpoint fails to receive any data or keep-alive packets
for more than two seconds. The transmitting endpoint
will generate a heartbeat every second if no data packets
need to be sent. Therefore, the receiving endpoint should
receive at least two keep-alive packets within the timeout
period. If no data or keep-alive packets arrive, the
receiving endpoint will trigger the callback to warn the
application that the peer is unreachable. The application
callback is provided with a value that indicates the
elapsed time since last contact. Note that the application
can choose the appropriate course of action when
receiving this warning. If the application does nothing,
the mocket endpoint will continue normally, but will
continue generating the warnings every second. One
simple behavior an application can adopt is to wait for
some interval of time (for example, 30 seconds), and then
assume that the connection is lost and ask the mocket to
close the local endpoint.

The connection loss mechanism can also be integrated
with a middleware that manages communications
resources. In the current implementation, this mechanism
is integrated with the agile computing middleware [9]
[10], which can proactively physically move resources in
mobile ad-hoc wireless environment to restore lost
communications, or to facilitate necessary
communication.

Mockets also provides an optional monitoring component
– the MocketStatusMonitor. If the MocketStatusMonitor
is started, all mockets on the host transmit information to
the MocketStatusMonitor. This information includes
connections established, failed connection attempts,
statistics, and warnings about unreachable peers. The
MocketStatusMonitor can react to the failed connection
attempts and unreachable peer warnings appropriately.

Flexible Buffering Options

Mockets adopts the Nagle algorithm to minimize the
number of packets sent over the network, thus optimizing
the average header size/payload size ratio and therefore
the channel usage efficiency. Instead of just supporting
the ability to enable or disable this option, Mockets
provides a flexible buffering time for outgoing data.
Applications are free to choose any appropriate buffering
time based on their requirements or turn off buffering
completely, which is the equivalent of disabling the
Nagle algorithm. This capability is useful for applications
that need different limits on how long data may be
buffered before transmission. For example, a real-time
control application may set the transmission buffer time
to 10 ms instead of 100 ms in order to reduce latency
introduced by buffering.

Transparent Mobility

Some distributed systems rely on process migration – the
ability to capture the execution state of a process and
move the state to a remote system over a network
connection. Process migration is used in situations
ranging from load balancing to mobile agent systems that
provide strong or forced migration [11]. Handling open
network connections is a challenging problem with
process migration. If a process which has an open
connection must be migrated involuntarily, the network
connection must be restored after the process reaches the
destination host. Otherwise, the semantics of the
migration will not be transparent to the process.

The Mockets library supports the transparent migration of
a mocket endpoint. Before an endpoint is moved, the
mocket connection can be suspended at which point the
remote endpoint will enter a standby state. The local
endpoint can then be migrated to a new host and the
connection resumed. This will result in the local endpoint
reconnecting transparently with the remote endpoint. The
mocket on the remote endpoint is notified of the address
change in the communication endpoint and acts properly;
the remote application does not need to be aware of the
temporary suspension of the connection. The local
endpoint can be migrated using a variety of mechanisms.
For example, in the Java environment, all the object
instances that implement the stream mocket in use by the
local endpoint can simply be serialized and transferred
over a network link.

Figure 1 below shows the process of a mocket migrating
from one host to another. The initial state is Process 1
running on Host A with an open connection to Process 2
on Host C. When Process 1 needs to move to Host B, the
mocket in Process 1 sends a SUSPEND control message
to the mocket in Process 2. Once the SUSPEND has been

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 13:53 from IEEE Xplore. Restrictions apply.

 4 of 7

acknowledge with a SUSPEND_ACK, the process is
allowed to migrate along with the mocket endpoint. Once
the process reaches Host B and restarts, the mocket in
Process 2 sends a RESUME control message. The state of
both mockets returns to ESTABLISHED after Process 2
receives the RESUME_ACK control message.

Transparent mobility is currently supported only by the
Java implementation, which complements the agile
computing middleware [9] [10] and the NOMADS
mobile agent system [12] that provides strong migration.
This capability can be implemented in the C++ and C#
versions if a need arises.

Figure 1: Migration of a mocket Endpoint

The stream mockets transport protocol is not meant to be
a full-featured replacement of TCP. There is no
immediate plan to support advanced features like out-of-
band data and half-close mechanism, as these features are
not commonly used by TCP-based networking
applications. These capabilities could, however, be
incorporated as needed. Path Maximum Transmission
Unit (MTU) discovery, on the other hand, will probably
never be implemented, since in the highly dynamic
scenario of ad-hoc networks it would lead to considerable
performance degradation without introducing any
significant improvement to throughput or channel usage
efficiency.

IMPLEMENTATION DETAILS

Figure 2 shows the implementation of a mocket and a
server mocket. The exact API depends on the language.
For example, the Java version of Mockets provides
subclasses of InputStream and OutputStream to comply
with the standard Java I/O API. The C++ version simply
provides read() and write() calls modeled after the
standard BSD sockets API. Each mocket contains a
Transmitter and a Receiver object, which operate as

independent threads. The two objects share a UDP socket
that is used for the underlying communication.

Figure 2: Mockets Implementation Details

When the application sends data over the UDP socket, the
data is passed to the Transmitter object that sends it over
the network (performing buffering according to the Nagle
algorithm when needed and respecting the window size
advertised by the remote endpoint) and stores it in the
outstanding packet queue, where it will remain waiting to
be acknowledged.

In a similar way, when an incoming packet arrives at the
UDP socket, the receiver thread processes the data and
enqueues it in the ReceiverByteBuffer. When the
application issues a read data request to the mocket, the
request is forwarded to the Receiver which returns the
data previously stored in the ReceiverByteBuffer.

Like TCP sockets, Mockets-based communications are
established by connecting an active mocket to a remote
(passive) endpoint. The passive side is represented by a
server mocket, which has an accept method for an
application to receive incoming connection requests. All
the processing of the incoming connection happens in the
accept method of the server mocket, which is expected to
be called continuously by the application. The server
mocket keeps track of all incoming connections to handle
retransmitted SYN packets properly.

Note that the current implementation uses two threads per
mocket endpoint, one in the receiver to continuously read
from the UDP socket and the other in the transmitter to
retransmit packets if they are not acknowledged within
the timeout interval. While this design results in a clean
and simple implementation, the number of active threads
implies a limit on the scalability and hence is an issue
with applications that create a large number of endpoints.
There are two alternative approaches. The first approach
would be to use common transmitter and receiver threads
on a per application or per VM basis. This would result in
a significant reduction in the number of threads but does
add some complexity to the implementation. The second

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 13:53 from IEEE Xplore. Restrictions apply.

 5 of 7

alternative is to push the mocket implementation down
into the operating system kernel, thereby requiring only
two threads for a whole system. However, this approach
is not ideal because the framework would no longer be
realized purely at the application level, thereby making it
more difficult to deploy and to support multiple platforms
and operating systems.

The MocketStatusNotifier component uses a loopback
UDP socket to send connection setup, teardown,
connection loss warning, and statistical information. This
information is transmitted to a UDP port on the local
host. An application (or middleware) may choose to use a
MocketStatusMonitor component, which would receive
the notifications sent from every mocket on the local
host. As described earlier, the monitoring component can
use this information to implement behaviors such as
manipulating the physical nodes in order to change the
network configuration.

EXPERIMENTAL RESULTS

Two experiments were conducted to measure the
performance of mockets and compare the performance
with respect to TCP sockets. In both cases, the
experiments measured the time to transmit 2 megabytes
of data from a client to a server and receive an
acknowledgement back from the server.

The computers for the first set of experiments were two
Fujitsu Stylistic ST4000 series tablet computers running
Windows XP Table PC edition. Six different network
configurations were used to measure the performance of
both mockets and sockets. The first network
configuration was an Ethernet LAN at 10 Mbps. In order
to minimize the impact of other random traffic, a
crossover cable was used between the two computers.
The second network configuration was 802.11b in ad-hoc
mode. The Wireless LAN cards used for this test were
Orinoco Gold 11 Mbps cards.

The remaining four network configurations were using
ad-hoc routing nodes designed by BBN for the Warrior’s
Edge initiative of the Horizontal Fusion Portfolio. Four
different configurations were created to measure the
performance – with two nodes (one hop), three nodes
(two hops), four nodes (three hops), and five nodes (four
hops). In all cases, the nodes were physically positioned
in order to guarantee that the data was flowing through
the specified number of hops.

The tablet computers connected to the ad-hoc routing
nodes using a standard 10 Mbps Ethernet LAN. The ad-
hoc nodes themselves were operating on 802.11g wireless
cards. All of the wireless cards were configured to use

channel 1, which was not used by any other device in the
test environment.

Table 1 below shows the performance comparison
between Mockets and TCP sockets. For these tests, the
C++ implementation of Mockets was used. For each test,
the experiment alternated between Mockets and TCP
sockets. The tests on the 10 Mbps LAN and 802.11b Ad-
Hoc were repeated 100 times whereas the tests with the
BBN nodes were repeated 200 times. The experiment
shows that on the wired 10 Mbps LAN, Mockets perform
worse by 4.27% whereas in the wireless configurations,
Mockets outperformed TCP sockets. In the case of
802.11b, the performance improvement was 22.68% and
with the BBN nodes in the 4 hop configuration, the
performance improvement was 21.43%.

The second experiment measured the performance of the
C++ and Java versions of Mockets on both Windows and
Linux operating systems. The goal was to compare both
the effect of the runtime platform as well as the
underlying operating system. The computers were two
IBM ThinkPad laptops running Windows XP or Linux
(kernel version 2.6). The Wireless LAN cards were
Orinoco Gold 11 Mbps cards. The 10 Mbps Ethernet
LAN test was conducted using a crossover cable. For the
Java benchmarks, version 1.4.2 of Sun’s Java Runtime
Environment was used as the virtual machine.

Table 1: Throughput (bytes/ms) Comparison Between
Mockets and Sockets

Mockets Sockets Improvement
Configuration
10 Mbps LAN 1078.11 1126.18 -4.27%
802.11b Ad-Hoc 503.02 410.02 22.68%
BBN 1 Hop 856.53 847.35 1.08%
BBN 2 Hops 345.30 292.64 17.99%
BBN 3 Hops 164.98 147.65 11.73%
BBN 4 Hops 97.99 80.70 21.43%

Throughput (bytes/ms)

Table 2: Throughput (bytes/ms) Comparison Between
C++ and Java Implementations of Mockets on Win32 and

Linux Platforms
802.11b Ad-Hoc 10 Mbps LAN

Win32/C++ 492 1097
Win32/Java 499 1174
Linux/C++ 508 1046
Linux/Java 544 1204

Table 2 above show the results of the experiments. Java
slightly outperformed C++ on both Linux and Windows,
indicating that there is some room for optimization of the
C++ version.

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 13:53 from IEEE Xplore. Restrictions apply.

 6 of 7

OVERVIEW OF THE MESSAGE MOCKETS API

Mockets also provides a message oriented
communication protocol designed to provide additional
functionality beyond that of both TCP and datagram
sockets. Figure 5 below shows the Mockets library
hierarchy.

Figure 5: Mockets Hierarchy

Message-oriented mockets provide applications with the
ability to send messages to a peer application by using
different delivery services (called "flows") with specific
communication semantics. After connection
establishment, the application will be able to select one or
more flows and use them to send data to the remote
endpoint. The application can choose the characteristics
of each flow and set the transmission parameters for the
messages to be sent on the flows.

The parameters that an application can specify, when
selecting a flow, are message sequencing and reliability.
Flows can carry both sequenced and unsequenced
messages. Using a sequenced flow ensures that the data
will be delivered to the peer application in the same order
in which it was sent. The application can also request
reliable messages. In this case, all messages will be
acknowledged by the receiver. Message sequencing and
reliability are orthogonal characteristics and an
application can use flows with any of combination of
these two parameters.

In addition, for each flow, the application can choose
several transmission parameters. Message priority is a
parameter that forces Mockets to give preference to a
specific class of messages when scheduling them for
transmission. This can be valuable in the case of time-
sensitive and control applications. However, a careful
implementation of the output packet scheduler is required
in order to achieve good performance and avoid
starvation of low priority packets while giving the
applications all the necessary flexibility in
communication semantics. Mockets accomplishes this by
dynamically raising the priority of enqueued messages
each time they are passed over.

Applications may also classify the data sent over the flow
into different message types. This classification allows
applications using flows to either delete or replace all

previously enqueued messages of a specific type.
(Messages with no assigned type cannot be deleted or
replaced.) This feature is useful in situations where
applications are sending periodic updates and a new
update invalidates previous updates. When using a
reliable flow, the mockets framework will buffer
messages until they have been successfully received by
the remote endpoint. If the network is unreliable,
messages can accumulate. Using the tag and replace
feature, mockets will be able to remove all previous
updates that are still in the queue and replace them with
the latest update. This reduces transmission of
unnecessary data and hence reduces network bandwidth
utilization.

The tag and replace feature also supports applications that
use multiple but interrelated data types such as MPEG.
For instance, an MPEG streaming video application
might use two different message tags, one for keyframes
and a second for delta frames. The application could then
choose to replace any enqueued but unacknowledged
keyframes by first deleting all of the pending delta frames
and then replacing the pending keyframes with the latest
keyframe.

The message mocket can optionally be configured to
perform cross sequencing. Messages belonging to the
sequenced flows will have both an intra-flow sequence
number and a cross-flow sequence number. In this way,
the application will be able to make sure that messages
sent over different flows will be delivered to the peer
application in the desired order.

Applications can also select the values of enqueue and
retransmission timeouts. The enqueue timeout is a
timeout for messages to be included in the
transmission/pending message queue. If the timeout
expires the message is not enqueued and an error is
returned to inform the application. The retransmission
timeout is the timeout for the retransmission of a message
on a reliable flow waiting for an acknowledgement. If
this timeout expires before an acknowledgement arrives,
the message will be removed from the outstanding
message queue and silently discarded.

With this architecture, messages having the same
application-level semantics can be sent over several flows
having different communication semantics (e.g., a
temperature sensor could decide to send a temperature
update message over a high-priority reliable flow for
every n temperature update messages sent over a low-
priority unreliable flow).

However, it is important to realize that the flow-based
architecture of message mockets is not designed to allow
distributed applications to perform multiplexing of data at

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 13:53 from IEEE Xplore. Restrictions apply.

 7 of 7

the application level. In fact, the only application which
is aware of the presence of flows is the one on sender
side, as all the data sent over the different flows will be
delivered to the peer application through the receive
method. The receiving application has absolutely no
knowledge of how many different flows are used in the
data transfer process.

As in stream mockets the message mocket
communication protocol is UDP based. In order to make
the message mocket protocol more resistant to SYN flood
attacks, the connection startup procedure is a 4-way
handshake like SCTP [13].

CONCLUSIONS

Mockets is an application-level communication library
capable of providing TCP-like semantics over UDP. The
API is designed to facilitate porting of existing
networking applications easily. Mockets provides better
performance than TCP over wireless ad-hoc networks.
Mockets also supports transparent mobility of the
connection endpoints, keep-alives and connection loss
detection, and flexible buffering options. Applications
can query Mockets to obtain statistics such as packets
discarded and retransmission counts, thereby allowing
themselves to dynamically adapt to the underlying
network. Mockets has been implemented in Java, C++,
and C#. Mockets also provides support for message-
oriented communications, along with a suite of new
features to better support applications operating in
unreliable networks. The Mockets library along with the
source code is available free for non-commercial use.

ACKNOWLEDGEMENTS

This work is supported in part by the U.S. Army
Research Laboratory under contract W911NF-04-2-0013,
by the U.S. Army Research Laboratory under the
Collaborative Technology Alliance Program, Cooperative
Agreement DAAD19-01-2-0009, and by the Office of
Naval Research under grant N00014-03-1-0780. The
authors would also like to thank Steven Choy and Jessie
Kovach at the U.S. Army Research Laboratory for their
efforts in integrating Mockets into their applications.

REFERENCES

[1] B. S. Bakshi, P. Krishna, N. H. Vaidya, D. K.
Pradhan, Improving Performance of TCP over Wireless
Networks, in: Proceedings of 17th Int. Conf. Distributed
Computing Systems, Baltimore, May 1997.

[2] K. Chandran, S. Raghunathan, S. Venkatesan, and R.
Prakash, A feedback based scheme for improving TCP
performance in ad-hoc wireless networks, in: Proceedings

of International Conference on Distributed Computing
Systems, Amsterdam, 1998.

[3] Z. Fu, B. Greenstein, X. Meng, S. Lu, Design and
Implementation of a TCP-Friendly Transport Protocol for
Ad Hoc Wireless Networks, in: Proceedings of 10th
IEEE International Conference on Network Protocols
(ICNP'02), Paris, November 2002.

[4] J. Calagaz, W. Chatam, B. Eoff, J. A. Hamilton Jr.,
On the Current State of Transport Layer Protocols in
Mobile Ad hoc Networks, in: Proceedings of the 42nd
annual ACM Southeast regional conference, Special
session on mobile computing, pp. 76—81, 2004.

[5] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, M. Gerla,
The Impact of Multihop Wireless Channel on TCP
Throughput and Loss

[6] G. Holland, N. Vaidya, Analysis of TCP Performance
over Mobile Ad Hoc Networks, in: Proceedings of
IEEE/ACM MOBICOM '99, August 1999.

[7] X. Chen, H. Zhai, J. Wang, Y. Fang , TCP
Performance over Mobile Ad Hoc Networks, in:
Canadian Journal of Electrical and Computer
Engineering, April 2004.

[8] Z. Fu, X. Meng, S. Lu, How bad TCP can perform in
mobile ad hoc networks, in: Proceedings of IEEE
International Symposium on Computers and
Communications (ISCC'02), Taormina, Italy, July 2002.

[9] N. Suri, J. Bradshaw, M. Carvalho, M. Breedy, T.
Cowin, R. Saavedra, S. Kulkarni, Applying Agile
Computing to Support Efficient and Policy-controlled
Sensor Information Feeds in the Army Future Combat
Systems Environment, in: Proceedings of Collaborative
Technologies Alliance Conference (CTA 2003), 2003

[10] N. Suri, J. Bradshaw, M. Carvalho, T. Cowin, M.
Breedy, P. Groth, R. Saavedra, Agile Computing:
Bridging the Gap between Grid Computing and Ad-hoc
Peer-to-Peer Resource Sharing, in: Proceedings of the 3rd
IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGrid 2003), 2003.

[11] D. Milojicic , F. Douglis, R. Wheeler. Mobility:
Processes, Computers, and Agents. ACM Press.

[12] N. Suri, J.M. Bradshaw, M.R. Breedy, P.T. Groth,
G.A. Hill, and R. Jeffers. Strong Mobility and Fine-
Grained Resource Control in NOMADS. Proceedings of
the 2nd International Symposium on Agents Systems and
Applications and the 4th International Symposium on
Mobile Agents (ASA/MA 2000). Springer-Verlag.

[13] R. Stewart, Q. Xie, Stream Control Transmission
Protocol (SCTP), Addison-Wesley, November 2001.

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on November 9, 2009 at 13:53 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

